Tag Archives: Boone Formation

Cannon Creek Waterfall at Parthenon/Brentwood Contact

Notes from the Field-Durham Quadrangle

 

Geologic Map of the Durham Quadrangle, Madison and Washington Counties, Arkansas

Geologic mapping of the Durham 7.5-minute quadrangle in northwest Arkansas was recently completed by the STATEMAP field team.  STATEMAP in Arkansas is currently focused on detailed 1:24,000-scale mapping in the Ozark Plateaus Region in north Arkansas.  It is accomplished through a cooperative matching-funds grant program administered by the US Geological Survey.   Field work was performed between July and February, and included hiking/wading/swimming the entire 12-mile stretch of the upper White River located on the quad.  Previous mapping delineated five stratigraphic units for the 1:500,000-scale Geologic Map of Arkansas, but at the 1:24,000 scale, we were able to draw ten. Further division is possible, but several units were considered too thin to map on the available 40-foot contour interval.

You can download your own copy of the map at this link:

http://www.geology.arkansas.gov/maps_pdf/geologic/24k_maps/Durham.pdf

 

DurhamStratColumn

Generalized Stratigraphic Column of Durham Quadrangle

The Drakes Creek Fault, which runs diagonally from the southwest corner to the northeast corner, is the most striking feature on the map.  It is part of a major structural feature in northwest Arkansas, forming a lineament that can be traced at the surface for over 45 miles.  The Drakes Creek displays normal movement, is downthrown to the southeast, and offsets strata an average of 230 feet.  Associated with the fault on the northwest side is a large drag fold. There, rocks parallel to the fault are deformed such that units typically present at higher elevations away from the fault bend down to a much lower elevation next to the fault.  Erosion along this side of the fault has exposed the core of the fold along Fritts Creek, Cannon Creek, and other places.

image

Detail of Cross-section of Durham Quadrangle

The Durham quad is far-removed from areas of previous STATEMAP projects in north Arkansas.  We completed work on the Mountain View 1:100,000-scale quad last year, ending on the Brownsville quad near Heber Springs.  Focus has now turned to the Fly Gap Mountain 1:100K quad as the next high-priority area.  When completed, we will have continuous 1:24K coverage for a large portion of the central Ozark Plateaus Region.  The Durham quad was an appropriate choice to begin mapping in this area due to its proximity to designated type sections for many of the formations in north Arkansas.  This facilitated easy comparisons between our field observations on Durham with the classic outcrops where these formations were first described.  Initial field investigations included locating, describing, and sampling these historic outcrops near Fayetteville. We visited many places the names from which the stratigraphic nomenclature we still employ was derived.  These places have such names as: Bloyd Mountain, Kessler Mountain, Lake Wedington, Cane Hill, Prairie Grove, Brentwood, Winslow, and Woolsey.  Having seen the stratigraphy in these areas firsthand better prepares us to track changes in lithology and sedimentation as we continue to map to the east and south of Durham in the coming years.

The following images were taken during this year’s field season and are arranged in stratigraphic order from youngest to oldest:

DSCN6923

Liesegang boxworks–Greenland Sandstone.  Mapped into the Atoka Formation

DSCN7179

Asterosoma trace fossils–Trace Creek Shale of the Atoka Formation

DSCN6339

Kessler Limestone just below the Morrowan/Atokan Boundary–mapped into the Dye Shale of the Bloyd Formation

DSCN0706

Parthenon sandstone resting on the Brentwood Limestone, both of the Bloyd Formation.  The Parthenon was also mapped into the Dye

DSCN7923

Mounded bioherms in the Brentwood Limestone

DSCN4331

Tabulate coral colony in the Brentwood Limestone

DSCN7482

Herringbone cross-bedding in calcareous sandstone–Prairie Grove Member of the Hale Formation

DSCN5407

Goniatitic Ammonoids in calcareous sandstone–Prairie Grove

DSCN5535

South-dipping sandstone in the White River south of the Drakes Creek Fault–Cane Hill Member of the Hale Formation

DSCN5470

Soft-sediment deformation–Cane Hill

DSCN4033

Pitkin Limestone, below the Cane Hill near West Fork—Mississippian/Pennsylvanian Boundary

DSCN8341

A cluster of solitary Rugose corals–Pitkin Limestone

DSCN4565

Wedington Sandstone of the Fayetteville Shale at West Fork

DSCN4403

Base of the Wedington–mapped into the upper Fayetteville Shale

DSCN0763

Large septarian concretion–lower Fayetteville Shale

Img0033DSCN5622

Pyritized Holcospermum (seed fern seed-left) and goniatitic ammonoid (right)–lower Fayetteville Shale

DSCN5822

Boone Formation, along the White River in the northwest corner of the Durham quadrangle

This year, we’re moving east to map the Japton and Witter quads. Wish us luck as we begin a new field season.  We’ll try to keep you apprised, so until next time, we’ll see you in the field!

DSCN5534DSCN4657

Richard Hutto and Garry Hatzell

Buttress on Little Buffalo River near Parthenon

Notes From the Field: Boone Buttresses

Buttress on Little Buffalo River near Parthenon

Buttress on Little Buffalo River near Parthenon, Newton County

The photo above shows an unusual rock column located near Parthenon in Newton County.  Judging from the man standing at the base, it is probably over 100 feet tall.  Recently, I was asked what to call these impressive features.  The term we’ve used at the Survey is buttress, which is defined by the Glossary of Geology as a protruding rock mass on, or a projecting part of, a mountain or hill resembling the buttress of a building; a spur running down from a steep slope.  Example: a prominent salient produced in the wall of a gorge by differential weathering.  We’ve used the term buttress, instead of other terms like pinnacle or rock pillar, because these terms refer to a free-standing column of rock, whereas a buttress is, at least nominally, attached to the bluff line.  The term also differentiates these particular features from others that are similar in shape, such as pedestals or hoodoos, which typically form in clastic rocks like sandstone and siltstone.  Their development is controlled by joints, which are planar fractures with no displacement, and by the presence of a resistant caprock, which acts to protect the underlying, less-resistant rock from weathering as quickly.  This process leads to a characteristic shape that is wide at the top and narrower below.

Sandstone pedestal at Pedestal Rocks, Pope County

Sandstone pedestal at Pedestal Rocks, Pope County

A buttress, on the other hand, is typically either uniform in diameter or may taper slightly towards the top, probably because they develop in fairly homogeneous rock.

Buttresses are known to be present in two locations in Arkansas: along the Little Buffalo River near Parthenon in Newton County and along Bear Creek near Silver Hill in Searcy County.

dscn6238

Buttresses on Bear Creek, Searcy County

They are all developed in the Mississippian Boone Formation which averages about 320 feet in thickness, and is composed of interbedded limestone and chert.  Limestone is dissolved by slightly acidic surface and groundwater, and over time this process leads to many unusual surface and subsurface features known as karst.  Buttresses are one such feature.

The exact mechanism for their development is poorly understood, but some of the factors that contribute to their formation are known.  First, dissolution of limestone can produce similar shapes on a small scale, as seen in this photo of coarsely crystalline Fernvale Limestone in a creek bed.

Dissolutioned limestone in creek bed, Stone County

Dissolutioned limestone in creek bed, Stone County

This process may be all that is needed to produce the buttresses at a larger scale.  Second, all rock units have planes of weakness due to the regional history of tectonic stress.  This stress is usually expressed as a joint system, and is one of the most commonly observed structural features in an outcrop.  Observations at these two sites have shown that jointing is poorly exposed, but as you can see from the aerial photograph on Bear Creek, weathering of the buttresses roughly aligns with the most prominent joint trends in the area (N/S and NE/SW) as indicated by the joint diagram from the Geologic Map of the Marshall Quadrangle.

Aerial view of buttresses on Bear Creek showing prominent regional joint orientationsMarshall Rose

Aerial photo of buttresses on Bear Creek showing prominent regional joint orientations

So even though the joints are poorly developed, one can interpret that pathways for water preferred these orientations, enlarged them over time, and left the buttresses as erosional remnants. 

However they occur, they are certainly beautiful rock formations and worthy of further study.

Buttresses on Bear Creek, Searcy County

Buttresses on Bear Creek, Searcy County

Many thanks to Angela Chandler for the featured image!

Richard Hutto