Tag Archives: Pennsylvanian

Geo-pic of the week: Slickensides

Slickensidedshale_edited

The grooved surface pictured above is a slickenside.  Slickensides indicate the relative direction of movement between fault blocks (hanging wall moved up, down, laterally, etc..).  

Slickensides form when fault blocks move against each other.  The natural irregularities on each scratches grooves into the other.  The grooves are parallel to movement;  for instance in this example, movement was either to the right or the left.  To tell whether it was right or left, you can rub your hand along the slickensides.  They feel smooth in the direction the fault moved and rough in the opposite direction – it’s like petting a dog from tail to head.  Slickensides are a valuable tool because determining fault movement can be a challenge when there are no easily-recognized beds that can be correlated across the fault to show the sense of offset.

The shale above was photographed in Big Rock Quarry, North Little Rock, AR.  It’s a part of the Jackfork Formation (Pennsylvanian).

Geo-pic of the week: Conostichus trace fossils

Conostichus topConostichus bottom

Above are two pictures of a trace fossil, Conostichus, from the Ozark Plateaus region of Arkansas.  Like other trace fossils, Conostichus are structures found in sedimentary rock that represent the spot where an animal lived, fed, or travelled.  Despite their abundance, especially in rocks of the Carboniferous period (299 to359 million years ago), it’s not certain what kind of animal made Conostichus, because the animal’s body wasn’t preserved. 

The upper picture is the top of the Conostichus and shows the hole through which the animal entered or exited the structure.  The lower picture is the same Conostichus with the top facing down.  As you can see, they taper and come to a rounded point at the base, vaguely resembling a badminton birdie.  

At present, the most widely accepted theory for their origin is that Conostichus are burrow traces left by Sea Anemone.

Statemap 2015-16 Update

 

Hello all!

Well, another year, another map!  The Brownsville quad is now published (see map below), and a link to it will be posted on our website soon.  This year marks the 22nd anniversary of Statemap, aka the National Cooperative Geologic Mapping Program, in Arkansas.  Statemap is partially funded by a USGS grant, and was established to encourage the states to map their surface geology at the 1:24,000 scale.  To date, our mapping teams have completed thirty-three quadrangles in the West Gulf Coastal Plain and, with the recent publication of the Brownsville quad, forty quads in the Ozark Plateaus.

Geologic map Brownsville, AR

The geology of the area around Greers Ferry Lake has never been mapped in great detail until now.  Previous work had been to produce the 1:500,000-scale Geologic Map of Arkansas.  Because we mapped the Brownsville quad at the 1:24,000 scale, we were able to make some observations new to science.  A fault was discovered that had never been mapped previously.  We named it the Shiloh Fault for the old town, now inundated by the lake, that lies along its trace.  Meanders of the Little Red River channel approached this fault but didn’t cross it, probably due to encountering more resistant rock on the north side of the fault.  The Witts Springs Formation had not been mapped south of the Choctaw Creek Fault before, but we were able to draw in its upper contact with the Bloyd Formation along the Devil’s Fork and several other drainages.

Overturned cross beds in massive sandstone of the undifferentiated Bloyd Formation

As on other quads around Greers Ferry Lake, we continued to find terrace deposits left behind as the Little Red River carved the valley down to its present elevation.  Some of these are stranded as much as 260 feet above the current channel bottom (now located on the bottom of the lake).

DSCN0999

For many years now, our mapping program has focused on completing the Mountain View 1:100,000-scale quad.  This area encompasses thirty-two 1:24,000-scale quads and stretches from Richland Creek to Sylamore Creek on the north side and from the Illinois Bayou to Greers Ferry Lake on the south side.  Now that this area is finished, our Statemap Advisory Committee has decided we should jump over to northwest Arkansas to complete work on the Fly Gap Mountain quad, just west of the Mountain View quad (see map below).

STATEMAP index for blog

So for next year, the Statemap team is going to start work on the Durham quad in the northwest corner of the Fly Gap Mountain quad near Fayetteville.  We’ll have to spend a few weeks getting our feet on the ground, so to speak, because we won’t have the benefit of already mapped quads adjacent.  Fortunately, we will be very close to the type-sections for most of the formations we’ll be mapping, so hopefully, we can study the classic outcrops and trace them into our new field area without too much difficulty.

DSCN0704

A type-section is an area, or even just an outcrop, where a particular formation was first described.  They are named after a local geographic feature.  Formations first described in northwest Arkansas include: the Fayetteville Shale, the Pitkin Limestone, and the Hale Formation which has the Cane Hill and Prairie Grove as members.  Members are smaller, discernable units within a formation.  The type-section for the Bloyd Formation, including the Brentwood, Woolsey, Dye, and Kessler Members, and the Trace Creek, which is the basal member of the Atoka Formation (named for its type locality in Oklahoma), is on Bloyd Mountain near West Fork.

I would like to take this opportunity to thank my field partners that accompanied me this past year.

DSCN2086

I started the year with Ty Johnson, who has since moved into a permanent staff position at the Survey, so congratulations to him!  He was with me for just a year, but we covered a lot of ground together.  He’s now mapping the geology of the Lake Ft. Smith area with an emphasis on landslide mitigation.

DSCN2258

The writer and also principle investigator of the Statemap grant, Angela Chandler, went out a few weeks in the late fall before we could fill the vacancy Ty left behind.  No matter how much I learn, she always manages to teach me something new.

DSCN2641

We hired Garry Hatzell, a recent U of A grad, who started fieldwork in January.  He brings an enthusiastic knowledge of paleontology to the mix, and I look forward to his continued insight into the biostratigraphy of our field areas.

Without the help of these fine folks, we couldn’t have gathered the data or produced the map.  Also, I would have been stuck in the office—a torture for the unrepentant field geologist.

Wish us luck on the Durham quad!  And if you’re in northwest Arkansas during the next twelve months and happen to drive by a Jeep Cherokee with the AGS seal on it, be sure to stop and introduce yourself.

 DSCN3153

Until then, I’ll see you on the outcrop!

  DSCN2275       

Richard Hutto

Geopic of the week: Rosselia trace fossils

Rosselia1

Rosselia – or Rosselia socialis – is a trace fossil that’s common to rocks deposited in a variety of shallow marine environments such as estuaries, tidal flats, lagoons, etc..  This picture was taken in a quarry in the Pennsylvanian Bloyd Formation, near Greers Ferry, Arkansas.   Rosselia is a funnel-shaped burrow with concentric cone-like layers, and a sandy plug near the center.  The picture shows a side view, or cross-section, of several burrows.

Like many trace fossils, Rosselia was made by a soft-bodied animal that was rarely if ever fossilized.  We only know it existed because of the burrows it left behind.  They may represent places an animal lived, fed, or perhaps both.

One theory suggests the burrows were occupied by worm-like animals that fed by filtering  nutrients from sediment, then excreting the sediment outward around their bodies in concentric muddy layers.  When new beds of sand were deposited, the animal would crawl to the top of the sand bed and make a new burrow; this behavior is clearly evident in burrows at the center of the photo.

 

Be sure to check out more pictures of Rosselia here!

Statemap 2014-15 Update

2014-08-04 006

Hello all,

Just wanted to let you know that the Statemap 2014-15 field mapping project has resulted in the publication of three new geologic maps.  These are the Parma, Prim, and Greers Ferry quadrangles.  Reduced images are posted below.  These should be available as .pdfs on our website in the near future.  I’ll keep you posted!Parma

Parma Quadrangle

2014-09-15 013Prim

Prim Quadrangle

Prim boulder (cannonball concretion) in Sugar Camp Creek

Greers Ferry Layout

Greers Ferry Quadrangle

Old Terrace deposit underlying Greers Ferry, AR

Also, I would like to thank the many people who helped with data collection in the field this year, without whom this project would have been impossible.

2014-07-15 037 (2)2014-07-21 004

Andy Haner                                                        Danny Rains

 

2014-09-03 0052014-09-16 003

Angela Chandler                                                                     Stefanie Domrois

 

2014-10-15 010DSCN9627

Doug Hanson                                  Ty Johnson

Thanks, everyone!

 

Now it’s off to the Brownsville quad for next year!

DSCN0255

Richard Hutto

Geopic of the week: The Maumelle Chaotic Zone

Chaotic zone

This is a picture of sandstone and shale of the Maumelle chaotic zone that outcrops along highway 10 west of North Little Rock, Arkansas.  The Maumelle chaotic zone is part of the Jackfork Formation which forms the bedrock around much of the Little Rock area.  The chaotic zone is called that because of the disarray the rock is in there.  In the example above, broken blocks of sandstone are interspersed with disorganized shale beds that have been rolled, squashed and otherwise deformed (rock hammer at center is for scale).  The rocks weren’t deposited this way but were originally organized into horizontal beds on a deep-water ocean slope.  Before they could be hardened into solid rock, the slope failed and the beds were transported down hill in a massive submarine landslide. 

 

Note:  Other interpretations for this zone have been proffered.  The author of this blog prefers the above interpretation.

 

For more views of the Maumelle chaotic zone click here