Monthly Archives: March 2014

Statemap Field Blog—Dec. 2-4, 2013

2013-12-02 031

Hello all!

This week we finished up a few odds and ends on the Shirley quad.  We needed to get to a few suspected outcrops along the north side of the Middle Fork just east of Shirley.  As we were looking for a way to access them, we stumbled upon the Sid Burgess Historic M&NA Trail which starts in downtown Shirley and ends up about a mile distant at the historic Cottrell-Wilson Cemetery.  As luck would have it, this trail happened to access the very areas we needed to see.  If you’re ever in Shirley, it’s definitely worth checking out!

2013-12-02 0112013-12-02 0152013-12-02 018

We saw mostly thin-bedded sandstone and shale units of the same variety as on the south side of the Middle Fork and Weaver Creek upstream.  There are a few low dips toward the lineation, but nothing indicating a major structure.  I’m thinking this may all be the unit above the Witts Springs (Bloyd Formation) brought down to the southeast by a monocline.  The trouble is, we don’t really know what the Bloyd/Witts Springs contact looks like in this area yet.  That’s something we still need to work out.

Tuesday was wet again, but we set out to finish up the southernmost branch of Lost Creek anyway.  Seems to be mostly Witts Springs in there with some Cane Hill at the bottom of the valley.  We saw some great examples of soft-sediment deformation in some of the silty units on the way down.  Soft sediment deformation occurs during sedimentation when the rapid loading of usually more dense, overlying sediments causes the less dense, buried deposits beneath them to become partially liquefied, which forms various types of disruptions in the original bedding.  This can take the form of simple reorientation of the bedding as we have here, to more complex convolute bedding and flame structures.  I took a photo later in the week of a good flame structure in the Bloyd Formation.  Notice where the shale has been squeezed up between the thick, contorted beds of sandstone.

2013-12-03 0072013-12-04 019

Several massive calcareous sandstone units in the Witts Springs again illustrated the dramatic difference between outcrops weathered with and without the influence of groundwater.  Notice how rotten the outcrop of massive sandstone in the photo below left appears.  Also note the green color.  There is a layer of moss and lichen growing over almost the entire rock surface, made possible by its relative saturation by groundwater.  These organisms help accelerate the weathering of the rock, and there are places where you can actually see clumps of moss peeling off the surface along with a layer of sand.  This type of chemical weathering is known as chelation and results in the effective removal of the residual iron cement still holding the rock together after the calcite cement has been dissolved by groundwater.  The photo below right shows how “dry weathering” of a boulder of the same material can result in well-defined liesegang bands.  Highly concentrated iron has cemented these bands within the massive sandstone, and without the influence of groundwater, they are preferentially resistant to weathering, leaving them in bold relief.

2013-12-03 015

2013-12-03 034

On Friday, we looked at some of the last steep areas we haven’t vistited north of the Middle Fork east of Shirley.  Definitely still have Witts Springs right down to the river there, but there is also a thin- to very thick-bedded unit above it that is probably in the Bloyd.  We saw a fairly recent landslide above the river composed of material from that upper unit.  There was also a good cut and fill channel bed exposed in that unit as well.

2013-12-04 0052013-12-04 0142013-12-04 0152013-12-04 020

It was warm enough for the critters to be out again this week.  Just when I thought it was safe to put my foot down anywhere I pleased, I nearly stepped on a moccasin.  That’s him slinking back in his hole.  We also saw a western slimy salamander (plethodon albagula?) under some storm debris, which was subsequently replaced.

2013-12-04 0032013-12-03 046

Hopefully the warm weather holds out, but the forecast says the bottom may drop out on Friday.  We’ll see!

Until next week, see you on the outcrop!

 

Advertisements

Statemap Field Blog Nov. 25-27, 2013

2013-11-26 047

Hello all!

A cold rain on Monday was freezing on the trees, so we explored some of the many undeveloped road networks in Fairfield Bay, especially along Dave Creek and down to the lake on the east side of the map.

2013-11-25 009

2013-11-25 014

Not quite sure what we’re in here, but there is a calcareous sandstone massive not too far above lake level which could indicate that we’re still in the Witts Springs even though this is south of the lineation along the Middle Fork.  We’re getting a lot of strong southerly dips along the north edge of the lake which indicate there is a fault along that lineation, unfortunately the lake covers it.  Too bad this detailed geologic mapping was not done prior to 1963!

Tuesday we finished up the upper end of Big Branch.  The ice was still on the branches when we started, but soon began to melt which made it seem like it was raining again until about noon.

2013-11-26 021

At first, we thought we were finding additional Witts Springs/Cane Hill contacts, which was surprising since we were so far above where we had them downstream last week.  But we definitely had a thin-bedded sandstone that was shaly near the top beneath a classic basal Witts Springs sandstone.

2013-11-26 0742013-11-26 025

Or did we?  As it turned out, the thin-bedded sandstone was only about 40-60 feet thick and was above at least two other massive sandstone units.  Another Cane Hill look-alike!  That’s why you always have to look at the entire section, or you may miss something!

2013-11-26 0282013-11-26 052

What we took for the basal sandstone massive may actually have been the uppermost sandstone massive in the Witts Springs.  As we hiked on downstream, we did eventually find the actual Witts Springs/Cane Hill contact that lined up much better with the points we already had.

2013-11-26 065

Wednesday, it was so cold the moisture being wicked up certain grasses was making “frost flowers”.

2013-11-27 051

We walked up the lower end of Little Creek along the western edge of the map.  We had already seen the upper portion when we mapped Old Lexington, and it seems to be all Witts Springs in there.  We saw some good examples of “zebra rock” and “Prairie Grove weathering” in some of the massive sandstone units (see previous blog).

2013-11-27 0012013-11-27 023

Some of the calcareous sandstone is also fossiliferous, and I was lucky enough to find a good rugose coral weathering out in one fossiliferous zone.

2013-11-27 040 (2)

Well, looks like winter is here to stay!  At least I don’t have to watch for snakes anymore!  Until next week, see you on the outcrop!

STATEMAP Field Blog, Nov. 18-20, 2013

2013-11-19 062

Hello all!

Well, another great week to look at rocks!  We explored about a five mile stretch of Big Branch, definitely the biggest drainage left unexplored on the Shirley quad at this point.  Quite a bit of Cane Hill in the bottom, then several hundred feet of Witts Springs above.  The rocks near its confluence with Weaver Creek are dipping strongly southeast, and the Cane Hill actually dives into the subsurface there.

2013-11-19 0192013-11-18 0052013-11-19 029

Still haven’t decided if the big structure in Weaver Creek valley is a fault or just a really big monocline, but we’re leaning toward monocline right now because we still haven’t seen a real break in the rocks.  Of course, faults typically become covered because the fractured rock is preferentially eroded.  It just seems less and less likely that there is a fault there with each drainage we do that should cut across it.

Monday we walked in the lower end and got several strong SE dips in the Cane Hill.  Then we discovered an outstanding outcrop of basal Witts Springs sandstone, that we thought was a very large boulder at first because of the advanced state of the sort of “dry weathering” that usually affects the massive Witts Springs boulders after they become separated from groundwater, usually along joints, as they slide downslope.  This includes well-developed honeycomb taphoni, well-defined liesegang banding, and case-hardening of the surface.  In the bluff face, solutionally-enlarged joints can form fracture caverns, and spalling near the base can form bluff shelters.  All of this can happen under the influence of groundwater of course, but that kind of saturation usually leads to a punky or rotten texture in the rock, and forms very steep, covered topography.  The really spectacular outcrops occur when lack of groundwater slows down the weathering to a grain-by-grain process.  This is what I call “dry weathering”.  After walking up both sides and along the top, we concluded that it was indeed part of a continuous outcrop that was probably protected from groundwater penetration by its joint system.  I dubbed it “Castle Rock” because of its many turrets and towers.

2013-11-19 045

2013-11-18 0262013-11-18 036

2013-11-18 039

2013-11-19 033

Speaking of weathering, on Tuesday we saw a classic example of preferential weathering along beds of sandy limestone interbedded with limey sandstone.  When these beds are freshly exposed, they form light and dark bands within a smooth face of massive sandstone.  We refer to this informally as “zebra rock”.  The light bands are more limey, the dark bands less.  As weathering progresses, chemical weathering breaks down the more limey areas at an accelerated rate simply because there is more reactive material in that rock than in the sandier beds around it.  When weathered, these areas form long horizontal hollows or pits in the massive sandstone.

2013-11-20 0092013-11-20 008

We informally refer to this weathering pattern as “Prairie Grove weathering” after a Member of the Hale Formation in northwest Arkansas that most typically exemplifies this trait.  The base of the Witts Springs Formation is an equivalent unit to the Prairie Grove Member, and often massive sandstones within the Witts Springs will display this type of weathering as well.  Though not definitive, this characteristic can be used to help us determine if a given outcrop is within the Witts Springs.

2013-11-19 0502013-11-19 080

As we made are way up the Big Branch, we ran into our old nemesis: the February 5, 2008 tornado track.  This is the one that was on the ground for 122 miles in Arkansas and killed 14 people.  We’ve crossed it’s track on several maps, and it never ceases to amaze how destructive it was.

2013-11-19 077

I’ll be back next week.  Until then, see you on the outcrop!