Tag Archives: Arkansas

Geo-pic of the week: Herringbone Cross-Bedding

 

Crossbedding

Pictured above is sandstone displaying classic herringbone cross-beds.  Cross-bedding results from either sediment transport by flowing water, such as in this example, or by wind flow, as in the case of dunes.

Cross-beds form by the migration of sediment, and tilt in the direction of flow.  As sediment grains are carried by the current, they migrate up the gentle ramp of previously deposited cross-beds.  When they reach the end, they tumble down the steeper face there and are deposited to become part of the next cross-bed.  In this way the sediment migrates in the downstream direction.

Each group of similarly tilted cross-beds is known as a set.  In herringbone cross-bedding, the sets are oriented contrarily, which gives the outcrop a fishbone appearance.  These differently oriented cross-bed sets indicate changing flow directions.    

Advertisements

Geo-pic of the week: Oncolite

DSCN2293

Oncolite is a limestone made of oncoids, the roundish, tan things in the picture (average size less than an inch).  Oncoids are made by microbes called cyanobacteria.  Cyanobacteria, which also form larger mounds called stromatolites, are thought by many scientists to be one of the earliest forms of life to evolve on Earth.

The microbes attach to a nucleus – in this case fossil fragments – and encrust it in layers of calcium carbonate.  The bacteria gather energy by photosynthesis and, thus, require access to the sun.  Because they are easy to recognize and mostly limited to shallow marine environments, oncolites are useful to geologists, both as a stratigraphic marker and as an indicator of the depositional environment of the rock they are preserved in.    

These were photographed in the Kessler Limestone Member of the Bloyd Formation, northwest Arkansas.

Geo-pic of the week: Folded Rock In 3 Dimensions

 

folded rock together cross sectionfolded rock cross section close up

                                                         

Above are several images of the same rock sample: a highly deformed quartzose siltstone collected from the Womble Formation, Ouachita Mountains, Arkansas.  The uppermost image shows a cut and polished surface.  The green line that’s been added to the picture defines a fracture that split the sample after it was cut.  Ordinarily, that would be a bitter turn of events but, in this case, it was a fortunate accident.  The fracture provides a rare, multi-dimensional view inside a tightly folded rock (lower photo).  Luckily, the fracture propagated across the bedding rather than breaking along a bed, which makes the beds of the fold appear to fan out like a deck of cards showing a lot of the detail of the structure. 

Geo-pic of the week: Dogtooth Calcite

dogtooth2E

(FOV approx. 10 cm, photo by Corbin Cannon)

Even though they might look like it, those crystals in the picture above didn’t come out of a dog’s mouth. They are crystals of dogtooth calcite. Calcite (CaCO3) is the primary mineral that makes up limestone. It occurs in several crystal shapes. The two most commonly found in Arkansas are 6 sided rhombohedrons and the scalenohedral shape you see above. When it forms in this scalenohedral crystal structure it is called “dogtooth spar”.

Calcite is a very common mineral, but this particular crystal form of the mineral is typically only found in Arkansas in conjunction with the minerals sphalerite (zinc ore) and galena (lead ore) in the lead and zinc districts. Calcite is also a polymorph, like the mineral brookite from a previous geo-pic. This means calcite has “sister” minerals with the same chemical composition, but differing crystal structures. The three polymorphs of CaCO3 are: calcite, aragonite, and vaterite.

Cannon Creek Waterfall at Parthenon/Brentwood Contact

Notes from the Field-Durham Quadrangle

 

Geologic Map of the Durham Quadrangle, Madison and Washington Counties, Arkansas

Geologic mapping of the Durham 7.5-minute quadrangle in northwest Arkansas was recently completed by the STATEMAP field team.  STATEMAP in Arkansas is currently focused on detailed 1:24,000-scale mapping in the Ozark Plateaus Region in north Arkansas.  It is accomplished through a cooperative matching-funds grant program administered by the US Geological Survey.   Field work was performed between July and February, and included hiking/wading/swimming the entire 12-mile stretch of the upper White River located on the quad.  Previous mapping delineated five stratigraphic units for the 1:500,000-scale Geologic Map of Arkansas, but at the 1:24,000 scale, we were able to draw ten. Further division is possible, but several units were considered too thin to map on the available 40-foot contour interval.

You can download your own copy of the map at this link:

http://www.geology.arkansas.gov/maps_pdf/geologic/24k_maps/Durham.pdf

 

DurhamStratColumn

Generalized Stratigraphic Column of Durham Quadrangle

The Drakes Creek Fault, which runs diagonally from the southwest corner to the northeast corner, is the most striking feature on the map.  It is part of a major structural feature in northwest Arkansas, forming a lineament that can be traced at the surface for over 45 miles.  The Drakes Creek displays normal movement, is downthrown to the southeast, and offsets strata an average of 230 feet.  Associated with the fault on the northwest side is a large drag fold. There, rocks parallel to the fault are deformed such that units typically present at higher elevations away from the fault bend down to a much lower elevation next to the fault.  Erosion along this side of the fault has exposed the core of the fold along Fritts Creek, Cannon Creek, and other places.

image

Detail of Cross-section of Durham Quadrangle

The Durham quad is far-removed from areas of previous STATEMAP projects in north Arkansas.  We completed work on the Mountain View 1:100,000-scale quad last year, ending on the Brownsville quad near Heber Springs.  Focus has now turned to the Fly Gap Mountain 1:100K quad as the next high-priority area.  When completed, we will have continuous 1:24K coverage for a large portion of the central Ozark Plateaus Region.  The Durham quad was an appropriate choice to begin mapping in this area due to its proximity to designated type sections for many of the formations in north Arkansas.  This facilitated easy comparisons between our field observations on Durham with the classic outcrops where these formations were first described.  Initial field investigations included locating, describing, and sampling these historic outcrops near Fayetteville. We visited many places the names from which the stratigraphic nomenclature we still employ was derived.  These places have such names as: Bloyd Mountain, Kessler Mountain, Lake Wedington, Cane Hill, Prairie Grove, Brentwood, Winslow, and Woolsey.  Having seen the stratigraphy in these areas firsthand better prepares us to track changes in lithology and sedimentation as we continue to map to the east and south of Durham in the coming years.

The following images were taken during this year’s field season and are arranged in stratigraphic order from youngest to oldest:

DSCN6923

Liesegang boxworks–Greenland Sandstone.  Mapped into the Atoka Formation

DSCN7179

Asterosoma trace fossils–Trace Creek Shale of the Atoka Formation

DSCN6339

Kessler Limestone just below the Morrowan/Atokan Boundary–mapped into the Dye Shale of the Bloyd Formation

DSCN0706

Parthenon sandstone resting on the Brentwood Limestone, both of the Bloyd Formation.  The Parthenon was also mapped into the Dye

DSCN7923

Mounded bioherms in the Brentwood Limestone

DSCN4331

Tabulate coral colony in the Brentwood Limestone

DSCN7482

Herringbone cross-bedding in calcareous sandstone–Prairie Grove Member of the Hale Formation

DSCN5407

Goniatitic Ammonoids in calcareous sandstone–Prairie Grove

DSCN5535

South-dipping sandstone in the White River south of the Drakes Creek Fault–Cane Hill Member of the Hale Formation

DSCN5470

Soft-sediment deformation–Cane Hill

DSCN4033

Pitkin Limestone, below the Cane Hill near West Fork—Mississippian/Pennsylvanian Boundary

DSCN8341

A cluster of solitary Rugose corals–Pitkin Limestone

DSCN4565

Wedington Sandstone of the Fayetteville Shale at West Fork

DSCN4403

Base of the Wedington–mapped into the upper Fayetteville Shale

DSCN0763

Large septarian concretion–lower Fayetteville Shale

Img0033DSCN5622

Pyritized Holcospermum (seed fern seed-left) and goniatitic ammonoid (right)–lower Fayetteville Shale

DSCN5822

Boone Formation, along the White River in the northwest corner of the Durham quadrangle

This year, we’re moving east to map the Japton and Witter quads. Wish us luck as we begin a new field season.  We’ll try to keep you apprised, so until next time, we’ll see you in the field!

DSCN5534DSCN4657

Richard Hutto and Garry Hatzell

Geo-pic of the week: Basal Conglomerate

MissPennBoundary

Pictured above is a little piece of geologic history known as a basal conglomerate.  that’s a rock formed after a period of erosion that marks the boundary between two geologic time periods: in this case, the Mississippian (359-318 million years ago) and the Pennsylvanian (318-299 million years ago).

318 million years ago sea level subsided, bedrock was exposed, and the Mississippian Period came to an end.  When exposed to erosion at the earth’s surface, pieces break off from bedrock.  Flowing water in rivers, streams and oceans wears the edges of those rock fragments till they’re rounded.  Once ocean level rises and deposition resumes, the rounded gravel gets mixed with newly accumulating sediment and forms a rock which is made partly of fragments of the older bedrock.  Geologists call this type of rock a basal (at the base) conglomerate (containing round gravel) because it is the first bedrock signaling the beginning of a new period of geologic time.

Geo-pic of the week: Slickensides

Slickensidedshale_edited

The grooved surface pictured above is a slickenside.  Slickensides indicate the relative direction of movement between fault blocks (hanging wall moved up, down, laterally, etc..).  

Slickensides form when fault blocks move against each other.  The natural irregularities on each scratches grooves into the other.  The grooves are parallel to movement;  for instance in this example, movement was either to the right or the left.  To tell whether it was right or left, you can rub your hand along the slickensides.  They feel smooth in the direction the fault moved and rough in the opposite direction – it’s like petting a dog from tail to head.  Slickensides are a valuable tool because determining fault movement can be a challenge when there are no easily-recognized beds that can be correlated across the fault to show the sense of offset.

The shale above was photographed in Big Rock Quarry, North Little Rock, AR.  It’s a part of the Jackfork Formation (Pennsylvanian).