Tag Archives: Arkansas

Geo-pic of the week: Syn-depositional Faulting

Fault with lables

 

Pictured above is one of many faults, closely spaced together, in an outcrop of the Atoka Formation, near Lake Fort Smith, Arkansas.  The fault pictured extends from the upper right to the lower left and is highlighted.  This type of faulting is called syn-depositional faulting, meaning it occurred at about the same time the rock was being deposited.  It results in disturbed-looking outcrops like this one.

Around 300 million years ago, plate tectonic forces were deforming the Ouachita Mountains in south central Arkansas. Those forces also caused faulting in the southern Ozark Plateaus, as the sediment that composes this rock outcrop was being deposited.  The freshly deposited sediment wasn’t fully consolidated when the faulting took place and the rock surrounding the fault got contorted by the stress. 

Some of the deformed features of the outcrop are labeled above.  The Zone of Soft-Sediment Deformation is the area surrounding the fault where the rock has been deformed by shearing: there is no recognizable bedding in that zone.  The soft clay-rich Deformed Shale was squeezed plastically between the fault blocks in that soft sediment deformation zone.  The bedding orientations surrounding the deformation zone (indicated by magenta lines) vary greatly, because the soft bedrock was broken and heaved around by the fault.

Geo-pic of the week: Calcite-filled Tabulate Coral

tabulate coral

Continuing with our previous theme “Sharkansas”,  this week’s geo-pic is on Arkansas corals.  Of course, corals don’t live in Arkansas today, but from about 480 million years ago, up until roughly 40 million years ago, coral would have been a fairly common sight in the natural state.

The picture above is of a tabulate coral: a now-extinct variety of colonial coral.  Each hexagonal corallite chamber housed a simple, individual animal, called a polyp, that could protrude and retract to filter food from the water.  The chambers in this fossil are in-filled with the mineral calcite, but that occurred after the coral died and was incorporated into the rock.  It was photographed in the Ozark Plateaus, in the Prairie Grove Member of the Hale Formation.

Other varieties of coral are found in the rocks of Arkansas.  For more views of Arkansas corals click here

Geo-pic of the week: Shark Tooth

Shark tooth westfork

You wouldn’t know it to look around now, but Arkansas, at times in the distant past, was teaming with sharks (and other marine fish).   Indeed,  Arkansas was in part or wholly covered by ocean many times in the past.  One such time was 250 million years ago, during the Carboniferous Period.  The fossilized Cladodus tooth pictured above belonged to a primitive shark that had sharp teeth with multiple points of varying size that it used to gig fish before gulping them down.  The long point at the middle of the tooth is broken off and displaced to the right in this picture.  

This particular specimen was found near West Fork, Arkansas.  It was collected from the Prairie Grove Member of the Hale Formation, a limey sandstone.  However, shark teeth can be found locally, throughout other parts of the state, in marine rock layers spanning hundreds of millions of years. 

Geo-pic of the week: Dardanelle Rock

dardanelle rock from river

Pictured above is Dardanelle Rock located on the south side of the Arkansas River between the towns of Dardanelle and Russellville. The white truck in the lower right corner shows the scale of this outcrop. It was designated a Natural Area by the Arkansas Natural Heritage Commission in 1976.

The Arkansas River Valley is north of the Ouachita Mountains and is characterized by gently folded sedimentary rock that was subject, to a lesser extent, to the stress that folded the Ouachita Mountains.  The rock pictured here is the south limb of a broad syncline, or down-warped fold.  The north limb is about two miles to the northeast.  The bedrock dips to the north (toward the white truck), goes sub-surface beneath the Arkansas River, then reverses dip direction and rises back to the surface just southwest of Russellville.  If you could see a cross-section of the folded rock, it would look like giant a smiley face with the middle of the smile underground and the corners sticking up in opposite directions, two miles apart.

This picture gives perspective to the colossal size of geologic features geologists study.  Folds like this one, which can trap upward-migrating fluid, are sometimes rich oil and gas reservoirs.

Geo-pic of the week: Zinc Ore, Rush Creek Mining District

sphalerite and dolomite (1)

Zinc ore collected in 1943 from the Rush Creek Mining District, Marion County, Arkansas.  The brown mineral is sphalerite: an ore of zinc.  The pink mineral is dolomite – it’s pretty, but not economically valuable.   They were both deposited on the gray dolostone; you can just make it out on the right, in back. 

Zinc deposits are found throughout northern Arkansas, commonly with the lead mineral, galena.  They’re most abundant in Marion County, in a two mile stretch of rugged terrain, along Rush Creek, where 4 faults come together.  That area was mined for lead and zinc in the late 1800s and early 1900s.

It’s typical to find rich ore deposits in rock that’s been fractured by faulting.  The fractures facilitate migration of mineral-rich ground water which deposits the ore minerals in the fractures.  It’s hard to see in the picture, but the fractured dolostone rock, in this specimen, is bound together by the sphalerite and dolomite minerals.

Buttress on Little Buffalo River near Parthenon

Notes From the Field: Boone Buttresses

Buttress on Little Buffalo River near Parthenon

Buttress on Little Buffalo River near Parthenon, Newton County

The photo above shows an unusual rock column located near Parthenon in Newton County.  Judging from the man standing at the base, it is probably over 100 feet tall.  Recently, I was asked what to call these impressive features.  The term we’ve used at the Survey is buttress, which is defined by the Glossary of Geology as a protruding rock mass on, or a projecting part of, a mountain or hill resembling the buttress of a building; a spur running down from a steep slope.  Example: a prominent salient produced in the wall of a gorge by differential weathering.  We’ve used the term buttress, instead of other terms like pinnacle or rock pillar, because these terms refer to a free-standing column of rock, whereas a buttress is, at least nominally, attached to the bluff line.  The term also differentiates these particular features from others that are similar in shape, such as pedestals or hoodoos, which typically form in clastic rocks like sandstone and siltstone.  Their development is controlled by joints, which are planar fractures with no displacement, and by the presence of a resistant caprock, which acts to protect the underlying, less-resistant rock from weathering as quickly.  This process leads to a characteristic shape that is wide at the top and narrower below.

Sandstone pedestal at Pedestal Rocks, Pope County

Sandstone pedestal at Pedestal Rocks, Pope County

A buttress, on the other hand, is typically either uniform in diameter or may taper slightly towards the top, probably because they develop in fairly homogeneous rock.

Buttresses are known to be present in two locations in Arkansas: along the Little Buffalo River near Parthenon in Newton County and along Bear Creek near Silver Hill in Searcy County.

dscn6238

Buttresses on Bear Creek, Searcy County

They are all developed in the Mississippian Boone Formation which averages about 320 feet in thickness, and is composed of interbedded limestone and chert.  Limestone is dissolved by slightly acidic surface and groundwater, and over time this process leads to many unusual surface and subsurface features known as karst.  Buttresses are one such feature.

The exact mechanism for their development is poorly understood, but some of the factors that contribute to their formation are known.  First, dissolution of limestone can produce similar shapes on a small scale, as seen in this photo of coarsely crystalline Fernvale Limestone in a creek bed.

Dissolutioned limestone in creek bed, Stone County

Dissolutioned limestone in creek bed, Stone County

This process may be all that is needed to produce the buttresses at a larger scale.  Second, all rock units have planes of weakness due to the regional history of tectonic stress.  This stress is usually expressed as a joint system, and is one of the most commonly observed structural features in an outcrop.  Observations at these two sites have shown that jointing is poorly exposed, but as you can see from the aerial photograph on Bear Creek, weathering of the buttresses roughly aligns with the most prominent joint trends in the area (N/S and NE/SW) as indicated by the joint diagram from the Geologic Map of the Marshall Quadrangle.

Aerial view of buttresses on Bear Creek showing prominent regional joint orientationsMarshall Rose

Aerial photo of buttresses on Bear Creek showing prominent regional joint orientations

So even though the joints are poorly developed, one can interpret that pathways for water preferred these orientations, enlarged them over time, and left the buttresses as erosional remnants. 

However they occur, they are certainly beautiful rock formations and worthy of further study.

Buttresses on Bear Creek, Searcy County

Buttresses on Bear Creek, Searcy County

Many thanks to Angela Chandler for the featured image!

Richard Hutto