Tag Archives: Fairfield Bay

Link

2014-02-11 046

Hello all! Sorry I haven’t blogged in awhile. I’ve been so busy trying to complete the maps for this year by the June 30th deadline.  But, I am proud to announce that the Geologic Maps for Shirley and Fairfield Bay are now published and available on our website!  Click below to view and download the maps.

http://www.geology.ar.gov/maps_pdf/geologic/24k_maps/Shirley.pdf http://www.geology.ar.gov/maps_pdf/geologic/24k_maps/Fairfield%20Bay.pdf

The process to create these maps takes an entire year. I kept you updated each field week from July to April last year, so I thought you might be interested to know how we take the raw data we collected in the field and use it to make a map. First of all, it’s a collaborative effort.  It takes a lot of people who specialize in various disciplines working together to make this product.  Basically, drawing the map starts with the notes we took in the field.  At each point, we tried to identify the rock formation exposed there.  Sometimes this was difficult, especially in the southern portion of the Boston Mountains Plateau where we worked this year. These rocks are all so similar–mostly sandstone and shale.  Nevertheless, if you cover as much ground as we did, you begin to discern similarities in the rock types and bedding structures, and can make formation calls based on those similarities.  Many of the points are taken on what we considered to be contacts between different formations.  These points are used to hand draw contact lines on a blank topographic base map. 2014-07-11 0032014-07-11 007 These lines are continued into areas where the contacts may not be exposed, because we assume lateral continuity of these units.  Many times there are topographic breaks along these contacts which can help us draw the lines in areas of poor exposure or in areas we just didn’t get to.  Structural lines are drawn along the trace of faults or other structures at the surface in areas where we saw the hallmarks of faulting such as deformation bands and non-vertical joints.  Also, the many strike and dip measurements we took were plotted on the map and helped determine orientation of faults and other structures, such as the axis of a monocline.  Once all the lines were neatly drawn on the topo, it was scanned into the computer and georeferenced to the grid of all quads in the state.  Next, each line was painstakingly digitized in ArcView by one of our cartographers, in this case Brian Kehner.  The digitized map was then added to a layout that Danny created in Adobe Illustrator. 2014-07-11 008

The layout includes descriptions of each formation developed from our field notes and are specific to each quad.  A correlation of map units, a generalized stratigraphic column, an inset map of the locations of the field points, a symbol chart, and a rose diagram of the frequency of each joint direction are also added to the layout.  A cross-section based on formation thickness is hand drawn, digitized, and placed along the bottom of the layout. Formations are symbolized by color and an abbreviation.  Sometimes photos are added to balance the layout.  Also plotted are any quarries or pits we found or were in the economic commodities database we keep at the Survey.

2014-07-11 012 After we have a reasonably good map, it’s printed and set out for staff review.  They really let us have it, but this editing process always greatly improves the maps.  After two or three revisions, we finalize it and send it to the USGS by June 30 to fulfill the requirements of the STATEMAP grant.  Whew!  What a relief!Geologic Map of Shirley red1 Geologic Map of Fairfield Bay red This year, as in years past, I have designed a commemorative STATEMAP t-shirt.  I’m taking orders until July 25th if anyone is interested.  They are available for the cost of the shirt you choose plus the printing.  Please email me at richard.hutto@arkansas.gov for details. AGS14_shirt_front (1)AGS14_shirt_back (1) Now we get ready to head back out again to our new field area.  This year we’ll be mapping the Parma, Prim, and Greers Ferry quads.  I’m breaking in a new field partner this time out.  Andrew Haner says he’s looking forward to seeing some of the Arkansas wilderness.   I just hope the snake count is low this year.  From what I’ve see so far, the ticks seem to be at an all time high.  I’ll try to keep you posted, but will be out of the office four days a week this year.  That will leave little time for blogging.  So until my next post, I’ll see you on the outcrop! Richard Hutto

Statemap Field Blog, March 31-April 2, 2014

 

2014-04-01 075

Hello all!

Another great week in the field.  Signs of spring are everywhere, and unfortunately the field season is drawing to a close.  We skipped around all over the Fairfield Bay quad this week, still trying to trace the very thick-, massive-bedded sandstone that we’re calling the base of the Bloyd for now.  Just off the eastern edge of the Fairfield Bay quad is a locally famous outcrop of that sandstone that was supposedly visited by Hernando Desoto himself in 1542.  Whether or not that’s true, it is a very impressive bluff shelter known as the Indian Rock House.  A lot of eroded material was removed from the floor of the shelter when the adjacent Indian Hills Golf Club was built, leaving behind the fine sandstone amphitheater we see today.   One could see how this formation could later become a natural bridge if erosion continues along the joint set parallel to the bluff face.  If that interior arch were to fall out, then the remaining one would form a bridge.  This is how most of the sandstone natural bridges in Arkansas are formed.  Lots of graffiti has been scratched into the friable rock over the years, including some that may have been carved by native people.

2014-04-01 0802014-03-31 013

On Tuesday, we finished up our field work on the lake.  We still had a couple islands we needed to visit, and the entire south side of the lake is so steep that access by land would be difficult.  We were excited to find more old river terraces on the islands, including one that would have been deposited on a cut-off meander in the area of Harpers Cove.  The deposit is about 80 feet above and over a half mile north of the current river channel (before the lake was there, that is).  The high end of the range for the downcutting rate for the Colorado River in the western Grand Canyon is 16 centimeters/1000 years, and I think we can all agree that downcutting there probably exceeds that in Arkansas.  Using that rate, an estimated 152,000 years would have passed since that terrace was deposited.  That gravel has been there a long time!  Of course, cutting off the meander would have stranded that deposit at that time, but don’t forget that this stream is developed in bedrock, so meander cut-off would be a fairly infrequent event.  To get a better estimate of these events, methods such as luminescence dating are being developed to age date the sand in these stranded river terraces.  With this new technology, perhaps someday we will know when these terraces were deposited.

2014-03-31 0182014-04-01 053

2014-04-01 023

2014-04-01 0352014-04-01 005

On the south side of lake below Stevens Point is a good example of a modern landslide, and a bit of a cautionary tale.  Sometimes clearing trees for roads and houses can have catastrophic results.  The photo tells the story.  The major part of this landslide occurred March 28, 2005 just after a road was cleared from the house down to the lake.  Most of the material at the edge of the lake on the north side of Hunter Mountain is there as a result of old landslides, therefore any development in this area can cause it to become unstable, as evidenced here.  That’s why part of our project includes mapping areas where landslides have occurred.

2014-04-01 049

Speaking of Hunter Mountain, we ran across one of the now ubiquitous gas well pads up there, and I thought you might be interested to know the function of each piece of typical well head production equipment.  At each wellhead is a set of valves that regulate the flow of gas.  These are often controlled remotely, thus the solar panels which power the system.  The big tanks near them contain hydrogen sulfide which is introduced into the gas right away to give it a strong odor.  This odor is, of course, quite useful to determine if there are any gas leaks since natural gas is odorless.  From the wellhead, the gas flows to the separators which remove any fluids contained in the gas.  This fluid could include heavy hydrocarbons, but is mostly produced water.  These fluids are stored in large tanks which are built inside a berm.  The berm is designed to hold 1 1/2 times the capacity of one of the storage tanks in case of a spill.  The level in the tanks is also monitored remotely and emptied on a regular basis.  From here, the gas is piped to a compression station where it undergoes further treatment.   Then it is sent through a transmission line and on to your house.  It’s not pretty, but for now, we have to have it.

2014-04-02 0102014-04-02 0112014-04-02 012

Well, next week will be the last of our field season.

Until then, see you on the outcrop!