Tag Archives: Geologic Mapping

2019 STATEMAP Field Calendar now available for download

Download a commemorative 25th anniversary STATEMAP Field Calendar here:

https://www.geology.arkansas.gov/publication/other-publications/statemap-field-calendar-2019.html

We are celebrating the 25th year of detailed geologic mapping in Arkansas made possible by the passage of the National Geologic Mapping Act of 1992. It established STATEMAP which distributes funds to the states, typically geological surveys, in the form of cooperative grants which are used to partially fund various geologic mapping projects. The first grant received by the Arkansas Geological Survey, then known as the Arkansas Geological Commission, was for a proposal in fiscal year 1994.  Since that time, seventy-eight 1:24,000-scale geologic maps have been completed, with two more on the way this year.  Two maps at the 1:100,000-scale have also been published.  This marks an unprecedented commitment to gathering data about the surface of the earth in our state. Following is a factsheet summarizing the STATEMAP projects in Arkansas since 1994.

Statemap Factsheet-front-2019

Here is the law establishing STATEMAP:

National Geologic Mapping Act of 1992

PUBLIC LAW 102-285

102d Congress

signed May 18, 1992

 

An Act

To enhance geologic mapping of the United States, and for other purposes.

 

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled,

 

43 USC section 31a. Findings and purpose

(a) Findings

 The Congress finds and declares that–

(1) during the past 2 decades, the production of geologic maps has been drastically curtailed;

(2) geologic maps are the primary data base for virtually all applied and basic earth-science applications, including–

(A) exploration for and development of mineral, energy, and water resources:

(B) screening and characterizing sites for toxic and nuclear waste disposal;

(C) land use evaluation and planning for environmental protection;

(D) earthquake hazards reduction;

(E) predicting volcanic hazards;

(F) design and construction of infrastructure requirements such as utility lifelines, transportation corridors, and surface-water impoundments;

(G) reducing losses from landslides and other ground failures;

(H) mitigating effects of coastal and stream erosion;

(I) siting of critical facilities; and

(J) basic earth-science research;

(3) Federal agencies, State and local governments, private industry, and the general public depend on the information provided by geologic maps to determine the extent of potential environmental damage before embarking on projects that could lead to preventable, costly environmental problems or litigation;

(4) the combined capabilities of State, Federal, and academic groups to provide geologic mapping are not sufficient to meet the present and future needs of the United States for national security, environmental protection, and energy self-sufficiency of the Nation;

(5) States are willing to contribute 50 percent of the funding necessary to complete the mapping of the geology within the State;

(6) the lack of proper geologic maps has led to the poor design of such structures as dams and waste-disposal facilities;

(7) geologic maps have proven indispensable in the search for needed fossil-fuel and mineral resources; and

(8) a comprehensive nationwide program of geologic mapping is required in order to systematically build the Nation’s geologic-map data base at a pace that responds to increasing demand.

 

(b) Purpose

The purpose of sections 31a to 31h of this title is to expedite the production of a geologic-map data base for the Nation, to be located within the United States Geological Survey, which can be applied to land-use management, assessment, and utilization, conservation of natural resources, groundwater management, and environmental protection.

 

section 31c. Geologic mapping program

 

(c) Program objectives

The objectives of the geologic mapping program shall include–

(1) determining the Nation’s geologic framework through systematic development of geologic maps at scales appropriate to the geologic setting and the perceived applications, such maps to be contributed to the national geologic map data base;

(2) development of a complementary national geophysical-map data base, geochemical-map data base, and a geochronologic and paleontologic data base that provide value-added descriptive and interpretive information to the geologic-map data base;

(3) application of cost-effective mapping techniques that assemble, produce, translate and disseminate geologic-map information and that render such information of greater application and benefit to the public; and

(4) development of public awareness for the role and application of geologic-map information to the resolution of national issues of land use management.

(d) Program components

(3) A State geologic mapping component, whose objective shall be determining the geologic framework of areas that the State geological surveys determine to be vital to the economic, social, or scientific welfare of individual States. Mapping priorities shall be determined by multirepresentational State panels and shall be integrated with national priorities. Federal funding for the State component shall be matched on a one-to-one basis with non-Federal funds.

Miss January

https://www.geology.arkansas.gov/publication/other-publications/statemap-field-calendar-2019.html

Notes from the Field: Japton and Witter Quadrangles

 

Geologic mapping of the Japton and Witter 7.5-minute quadrangles was recently completed by the Arkansas Geological Survey’s STATEMAP field team. In Arkansas, the STATEMAP Program is currently focused on detailed 1:24,000-scale mapping in the Ozark Plateaus Region, located in the northern part of the state.

image

Figure 1. Japton and Witter Quadrangles on the 1:500,000-scale Geologic Map of Arkansas (Haley et al., 1993)

Japton_final-red.jpg

Geologic Map of the Japton Quadrangle, Madison County, Arkansas. Download a digital copy at:

http://www.geology.ar.gov/maps_pdf/geologic/24k_maps/Japton_24k_geologic.pdf

Geological Map of the Witter Quadrangle

Geologic Map of the Witter Quadrangle, Madison County, Arkansas.  Download a digital copy at:

http://www.geology.ar.gov/maps_pdf/geologic/24k_maps/Witter_24k_geologic.pdf

STATEMAP is a cooperative, matching-funds grant program administered by the U. S. Geological Survey. The goal of the program is to classify surface rocks into recognizable units based on a common lithology–basically, an inventory of surface materials. Also, we strive to locate and depict any structural elements that may have deformed the rocks. The rock units are classified into formations and members, and structures are described as synclines, anticlines, monoclines, and faults. During the project, a rich dataset was recorded in the field using a portable data collector/global positioning satellite receiver as well as by traditional methods. This made possible a more detailed depiction of geological and structural features and a more comprehensive description of lithology than previous studies had done. Data collection included:

  • 629 field locations recorded and described in detail
  • 3,385 photographs taken at recorded field locations
  • 72 strike and dip measurements, most depicted on the maps
  • 950 joint orientations, depicted in a rose diagram of strike frequency
  • 1 shale pit
  • 8 springs, previously undocumented
  • 108 rock samples collected and described

The new map is useful to landowners interested in developing their land for personal or commercial purposes, to scientists seeking a better understanding of landscape evolution and geologic history, and to planners responsible for resource development and mitigating environmental impacts.

Angela Chandler, Principal Investigator for the project, wrote the grant for fiscal year 2018 and we received funding adequate to produce two maps.  Two geologists, Richard Hutto and Garrett Hatzell, began their field season last July and after putting in 76 days in the field, concluded that portion of their work in February of this year. The area of investigation lies within the Interior Highlands Physiographic Region in north Arkansas, specifically the Boston Mountains Plateau portion of the Ozark Plateaus Province. Previous work by the AGS in this area had been done in preparation for the 1:500,000-scale Geologic Map of Arkansas by Haley et al. circa 1976 (see Fig. 1). That mapping project delineated five stratigraphic units in this area, but through extensive field reconnaissance, we were able to define ten units on these maps at the 1:24,000 scale. Further division is possible, but several units were considered too thin to depict on the 40-foot contours of the topographic map currently available, or too difficult to delineate by lithology alone.

Several tributaries of the White River are located on these quadrangles including Lollars Creek, Drakes Creek, and War Eagle Creek. The White River is a major water resource in Arkansas and southern Missouri, and as such we need to learn as much as we can about this important watershed. Included in the field work was hiking, wading, or swimming the entire 13-mile stretch of War Eagle Creek located within the Witter quadrangle, the 10 miles of Lollars Creek within the Japton, and many smaller drainages. The reason we concentrate our efforts on stream beds is that there, erosion has typically removed soil and loose rock leaving well-exposed outcrops of bedrock for us to study. Also, being able to see the entire stack of the rock sequence as we move up or downstream helps put each formation in context with the others. Discovering where one formation contacts another is one of the most important things we do while mapping. Because formations are laterally extensive, similar contacts can be connected into a contact line separating one formation from another. Figuring out where to draw these lines on the map is a major goal of the project.

From mid-February through the end of June, we analyzed field data, classified rock specimens, drew formation contacts and structures on the map, then handed it off to our cartography staff to digitize. Final layout and production of the maps was accomplished by the geologists, after which they were subjected to an extensive review and editing process by fellow staff.

The following images were taken during this year’s field season. Hopefully, they will provide a small glimpse into some of what we were privileged to experience in the field this year.  They are arranged in stratigraphic order from youngest to oldest:

Alluvium in War Eagle CreekDSCN1957[14]

Alluvium in War Eagle Creek (left). Landslide on Highway 23 above Dry Fork (right).

DSCN0110

Ball and pillow structures in the Atoka Formation in Drakes Creek.

Herringbone Crossbeds in AtokaDSCN1357DSCN1353

Sequence of photos zooming into herringbone cross-beds in the Greenland Member of the Atoka Formation.

DSCN0602

Large blocks of Kessler Limestone sliding into Lollar’s Creek.

DSCN2294DSCN2258DSCN2279

Sequence of photos zooming into oncolitic limestone of the Kessler Member of the Bloyd Formation. The oncolite pictured far right is nucleated on a tabulate coral.

DSCN1057

Lycopod (tree-like plant) fossil weathering out of the Dye Shale.

Top of the Parthenon sandstone in Lollar's CreekDSCN0491

Top of the Parthenon sandstone (Bloyd Formation) in Lollar’s Creek (left). Parthenon resting on the Brentwood Limestone (Bloyd Formation) with travertine precipitating at the drip line (right).

DSCN0319DSCN0773

Siltstone unit in the upper Brentwood Limestone. Cross-bedded (left) and bioturbated (right). 

DSCN0065

Biohermal mounds in the Brentwood Limestone in Jackson Creek.

DSCN3028

Massive bluff of limey sandstone in the Prairie Grove Member of the Hale Formation.

DSCN3307DSCN2742

Sandy limestone in the Prairie Grove. Stream abrasion has revealed cross-bedding (left) and an ammonoid (right).

DSCN1710DSCN1753

Typical thin-, ripple-bedded sandstone of the Cane Hill Member of the Hale Formation (left). A basal conglomerate in the Cane Hill contains fossiliferous and oolitic limestone pebbles and fossil fragments (right).  This unit probably rests on the Mississippian-Pennsylvanian unconformity.

DSCN1799

The Pitkin Limestone in War Eagle Creek.

This year we will be mapping the Weathers quadrangle which is just east of the Witter, and the Delaney quadrangle which is just south of the Durham (which we mapped two years ago). The Kings River flows through Weathers, so this should be a good place to start while river levels are low (and it’s so hot!). I will update you as I can, but until then, I’ll see you in the field!

Richard Hutto

Statemap 2015-16 Update

 

Hello all!

Well, another year, another map!  The Brownsville quad is now published (see map below), and a link to it will be posted on our website soon.  This year marks the 22nd anniversary of Statemap, aka the National Cooperative Geologic Mapping Program, in Arkansas.  Statemap is partially funded by a USGS grant, and was established to encourage the states to map their surface geology at the 1:24,000 scale.  To date, our mapping teams have completed thirty-three quadrangles in the West Gulf Coastal Plain and, with the recent publication of the Brownsville quad, forty quads in the Ozark Plateaus.

Geologic map Brownsville, AR

The geology of the area around Greers Ferry Lake has never been mapped in great detail until now.  Previous work had been to produce the 1:500,000-scale Geologic Map of Arkansas.  Because we mapped the Brownsville quad at the 1:24,000 scale, we were able to make some observations new to science.  A fault was discovered that had never been mapped previously.  We named it the Shiloh Fault for the old town, now inundated by the lake, that lies along its trace.  Meanders of the Little Red River channel approached this fault but didn’t cross it, probably due to encountering more resistant rock on the north side of the fault.  The Witts Springs Formation had not been mapped south of the Choctaw Creek Fault before, but we were able to draw in its upper contact with the Bloyd Formation along the Devil’s Fork and several other drainages.

Overturned cross beds in massive sandstone of the undifferentiated Bloyd Formation

As on other quads around Greers Ferry Lake, we continued to find terrace deposits left behind as the Little Red River carved the valley down to its present elevation.  Some of these are stranded as much as 260 feet above the current channel bottom (now located on the bottom of the lake).

DSCN0999

For many years now, our mapping program has focused on completing the Mountain View 1:100,000-scale quad.  This area encompasses thirty-two 1:24,000-scale quads and stretches from Richland Creek to Sylamore Creek on the north side and from the Illinois Bayou to Greers Ferry Lake on the south side.  Now that this area is finished, our Statemap Advisory Committee has decided we should jump over to northwest Arkansas to complete work on the Fly Gap Mountain quad, just west of the Mountain View quad (see map below).

STATEMAP index for blog

So for next year, the Statemap team is going to start work on the Durham quad in the northwest corner of the Fly Gap Mountain quad near Fayetteville.  We’ll have to spend a few weeks getting our feet on the ground, so to speak, because we won’t have the benefit of already mapped quads adjacent.  Fortunately, we will be very close to the type-sections for most of the formations we’ll be mapping, so hopefully, we can study the classic outcrops and trace them into our new field area without too much difficulty.

DSCN0704

A type-section is an area, or even just an outcrop, where a particular formation was first described.  They are named after a local geographic feature.  Formations first described in northwest Arkansas include: the Fayetteville Shale, the Pitkin Limestone, and the Hale Formation which has the Cane Hill and Prairie Grove as members.  Members are smaller, discernable units within a formation.  The type-section for the Bloyd Formation, including the Brentwood, Woolsey, Dye, and Kessler Members, and the Trace Creek, which is the basal member of the Atoka Formation (named for its type locality in Oklahoma), is on Bloyd Mountain near West Fork.

I would like to take this opportunity to thank my field partners that accompanied me this past year.

DSCN2086

I started the year with Ty Johnson, who has since moved into a permanent staff position at the Survey, so congratulations to him!  He was with me for just a year, but we covered a lot of ground together.  He’s now mapping the geology of the Lake Ft. Smith area with an emphasis on landslide mitigation.

DSCN2258

The writer and also principle investigator of the Statemap grant, Angela Chandler, went out a few weeks in the late fall before we could fill the vacancy Ty left behind.  No matter how much I learn, she always manages to teach me something new.

DSCN2641

We hired Garry Hatzell, a recent U of A grad, who started fieldwork in January.  He brings an enthusiastic knowledge of paleontology to the mix, and I look forward to his continued insight into the biostratigraphy of our field areas.

Without the help of these fine folks, we couldn’t have gathered the data or produced the map.  Also, I would have been stuck in the office—a torture for the unrepentant field geologist.

Wish us luck on the Durham quad!  And if you’re in northwest Arkansas during the next twelve months and happen to drive by a Jeep Cherokee with the AGS seal on it, be sure to stop and introduce yourself.

 DSCN3153

Until then, I’ll see you on the outcrop!

  DSCN2275       

Richard Hutto

Link

2014-02-11 046

Hello all! Sorry I haven’t blogged in awhile. I’ve been so busy trying to complete the maps for this year by the June 30th deadline.  But, I am proud to announce that the Geologic Maps for Shirley and Fairfield Bay are now published and available on our website!  Click below to view and download the maps.

http://www.geology.ar.gov/maps_pdf/geologic/24k_maps/Shirley.pdf http://www.geology.ar.gov/maps_pdf/geologic/24k_maps/Fairfield%20Bay.pdf

The process to create these maps takes an entire year. I kept you updated each field week from July to April last year, so I thought you might be interested to know how we take the raw data we collected in the field and use it to make a map. First of all, it’s a collaborative effort.  It takes a lot of people who specialize in various disciplines working together to make this product.  Basically, drawing the map starts with the notes we took in the field.  At each point, we tried to identify the rock formation exposed there.  Sometimes this was difficult, especially in the southern portion of the Boston Mountains Plateau where we worked this year. These rocks are all so similar–mostly sandstone and shale.  Nevertheless, if you cover as much ground as we did, you begin to discern similarities in the rock types and bedding structures, and can make formation calls based on those similarities.  Many of the points are taken on what we considered to be contacts between different formations.  These points are used to hand draw contact lines on a blank topographic base map. 2014-07-11 0032014-07-11 007 These lines are continued into areas where the contacts may not be exposed, because we assume lateral continuity of these units.  Many times there are topographic breaks along these contacts which can help us draw the lines in areas of poor exposure or in areas we just didn’t get to.  Structural lines are drawn along the trace of faults or other structures at the surface in areas where we saw the hallmarks of faulting such as deformation bands and non-vertical joints.  Also, the many strike and dip measurements we took were plotted on the map and helped determine orientation of faults and other structures, such as the axis of a monocline.  Once all the lines were neatly drawn on the topo, it was scanned into the computer and georeferenced to the grid of all quads in the state.  Next, each line was painstakingly digitized in ArcView by one of our cartographers, in this case Brian Kehner.  The digitized map was then added to a layout that Danny created in Adobe Illustrator. 2014-07-11 008

The layout includes descriptions of each formation developed from our field notes and are specific to each quad.  A correlation of map units, a generalized stratigraphic column, an inset map of the locations of the field points, a symbol chart, and a rose diagram of the frequency of each joint direction are also added to the layout.  A cross-section based on formation thickness is hand drawn, digitized, and placed along the bottom of the layout. Formations are symbolized by color and an abbreviation.  Sometimes photos are added to balance the layout.  Also plotted are any quarries or pits we found or were in the economic commodities database we keep at the Survey.

2014-07-11 012 After we have a reasonably good map, it’s printed and set out for staff review.  They really let us have it, but this editing process always greatly improves the maps.  After two or three revisions, we finalize it and send it to the USGS by June 30 to fulfill the requirements of the STATEMAP grant.  Whew!  What a relief!Geologic Map of Shirley red1 Geologic Map of Fairfield Bay red This year, as in years past, I have designed a commemorative STATEMAP t-shirt.  I’m taking orders until July 25th if anyone is interested.  They are available for the cost of the shirt you choose plus the printing.  Please email me at richard.hutto@arkansas.gov for details. AGS14_shirt_front (1)AGS14_shirt_back (1) Now we get ready to head back out again to our new field area.  This year we’ll be mapping the Parma, Prim, and Greers Ferry quads.  I’m breaking in a new field partner this time out.  Andrew Haner says he’s looking forward to seeing some of the Arkansas wilderness.   I just hope the snake count is low this year.  From what I’ve see so far, the ticks seem to be at an all time high.  I’ll try to keep you posted, but will be out of the office four days a week this year.  That will leave little time for blogging.  So until my next post, I’ll see you on the outcrop! Richard Hutto