Tag Archives: mineralogy

Geo-pic of the week: Dogtooth Calcite

dogtooth2E

(FOV approx. 10 cm, photo by Corbin Cannon)

Even though they might look like it, those crystals in the picture above didn’t come out of a dog’s mouth. They are crystals of dogtooth calcite. Calcite (CaCO3) is the primary mineral that makes up limestone. It occurs in several crystal shapes. The two most commonly found in Arkansas are 6 sided rhombohedrons and the scalenohedral shape you see above. When it forms in this scalenohedral crystal structure it is called “dogtooth spar”.

Calcite is a very common mineral, but this particular crystal form of the mineral is typically only found in Arkansas in conjunction with the minerals sphalerite (zinc ore) and galena (lead ore) in the lead and zinc districts. Calcite is also a polymorph, like the mineral brookite from a previous geo-pic. This means calcite has “sister” minerals with the same chemical composition, but differing crystal structures. The three polymorphs of CaCO3 are: calcite, aragonite, and vaterite.

Geo-pic of the week: Titanite

titanite2

(FOV approx. 2 mm, photo courtesy of Stephen Stuart)

The wedge-shaped crystal in the photo above is the mineral titanite. This calcium titanium silicate (formula CaTiSiO5) is commonly found as an accessory mineral in igneous intrusions similar to those present at 3M and Granite Mountain quarries near Sweet Home. This sample was collected from 3M Quarry.

Titanite gets its name from its titanium content, but it was more commonly known by the name “sphene” until 1982 when the new name was officially adopted by the International Mineralogical Association. Sphene was derived from the Greek word “sphenos”, meaning wedge.

Crystals of titanite have a higher dispersion than diamonds. Dispersion is the measurement of refractive properties of a gemstone. The higher the dispersion, the more “sparkle” from the gem. However, gem quality samples of titanite are very rare, and the mineral is relatively soft compared with other gemstones.

Geo-pic of the Week: Accessory Minerals

Modified by CombineZP(FOV approx. 2 mm, photo by Corbin Cannon)

Accessory minerals are minerals found in igneous rocks that are not used for the classification or naming of the rock. These minerals may be commonly present in a type of rock, but the absence of the mineral would not change the general classification geologists give to the rock.

The two accessory minerals in the center of the picture above are greenish-black needles of aegirine (AY-jur-EEN) and orangish-pink analcime (uh-NAL-seem) crystals. These minerals are frequently found together in igneous intrusions of syenite like the one present at Granite Mountain, where this sample was collected.

Accessory minerals give important clues to geologists when trying to determine details about how a rock formed and how it changed over time. They can make up a substantial portion or a fairly insignificant portion of a rock. Some accessory minerals make up a sufficient portion of the rock to be included as a modifier in the name, such as “biotite syenite”. Adding such a modifier gives geologists quick and useful information about how this rock differs from standard syenite.

Geo-pic of the Week: Brookite

brookite(FOV approx. 1.5 mm, photo courtesy of Stephen Stuart)

The metallic crystal in the center of the photo above is a mineral known as brookite. It was collected in Magnet Cove, AR. This particular crystal is approximately 0.5 mm in diameter.

Brookite is one of three forms of titanium oxide (TiO2) that naturally occur in Arkansas. These three forms are what are known as “polymorphs”. Polymorphs are minerals that have the same chemical composition but their atoms are arranged differently creating differing crystal structures. It’s the mineral equivalent of being a fraternal twin instead of an identical twin!

The three types of TiO2 crystal found in Arkansas are brookite, anatase, and rutile. When geologists talk about a mineral’s stability, they are talking about how much of a change in temperature and/or pressure (stress) is necessary to change the crystal structure or composition. The more stress required to change it, the more stable the mineral. Brookite is the least stable of the three forms and therefore the rarest. Typically, brookite crystals are yellowish or reddish brown in color, but the variety found in Arkansas is commonly black which is due to the presence of the element niobium (Nb) as an impurity.

This mineral usually occurs around metamorphic rocks or igneous intrusions similar to the intrusion at Magnet Cove.

 

Geopic of the week: Arkansas Wavellite

DSCN0480

The above picture shows two examples of the mineral wavellite: an aluminum phosphate mineral prized by rock and mineral collectors and fairly common in the Ouachita Mountains.  The green sample on the right is the typical color of wavellite, whereas the blue sample is a rare form.  The green color is due to the presence of vanadium.  These samples were both collected from an abandoned quarry a couple of miles northwest of Mt. Ida, Arkansas.

It’s easy to see why mineral collectors would be interested in wavellite as it comes in a variety of attractive colors – rarely white, yellow and black in addition to the blue and green examples shown here. It also has a visually interesting growth habit; it grows in botryoidal (grape-like) spheres that internally consist of a radiating array of slender crystals that resembles an eye.  Examples of this eye-like structure can be seen by clicking on the “more views” link below.

Wavellite is also quite sparkly and Christmassy.  I even hear it’s the official mineral of the north pole.  Ho ho ho!

To see more views of Arkansas wavellite click here