Author Archives: argeology

Geo-pic of the week: Siliceous Oolite

Silicified oolite

Ooids are tiny grains that are typically composed of CaCO3 either as calcite or aragonite.  They precipitate from seawater in concentric bands around a nucleus (for instance a fragment of rock or fossil) in turbulent shallow conditions. 

Once ooids form, they can accumulate and be cemented to form a sedimentary type of limestone called oolite.  The above picture is a magnified and tumbled piece of oolitic chert collected fromgravel on Crowley’s Ridge in northeast Arkansas.  The difference between this and typical oolite is that it came into contact with silica(SiO2)-rich ground water after it formed.  The SiO2 then replaced the CaCO3 the rock was initially composed of.   The polished surface provides an ideal view of the internal structure of the spherical ooids.

Advertisements

Geo-pic of the week: Fluvial Erosion

Buffalo River Valley

Recently, we posted a blog explaining that the Ozark Mountains are actually incised plateaus and that the hills are remnants standing between the incised river valleys. If you missed that one you can see it here.  Now, we will talk about how a river is able to erode solid rock.

The picture above is of the Buffalo National River in its valley. As you can see, an impressive volume of rock has been excavated by this little river. A common misconception is that the water is carving the rock. Water is soft and softer things generally do not abrade harder things. Slightly acidic water can dissolve rock very slowly, particularly carbonate rock like limestone, However, the majority of the erosion in a river is due to the sediment suspended in the flowing water. As the sediment – which can range from tiny grains of silt to boulders– is carried downstream by the current, it skips along the channel, colliding with the bedrock. The repeated collisions break down the sediment, chipping off edges and rounding it. By the same process, new sediment is ground away from the bedrock and the valley is slowly enlarged.

The same thing is true of wind erosion such as in a desert setting.  The wind itself really can’t erode the rock.   The erosion is due to strong winds lifting loose sand and blasting it against the solid rock, slowly wearing it away.

Geo-pic of the week: Sigmoidal Veins

Sigmoidal vein in sandstoneedited

The picture above shows a boulder of Hot Springs Sandstone with well-developed sigmoidal veins.  Sigmoidal veins – sometimes called tension gashes – form in rock by shear stress.  That’s stress that causes adjacent parts of a rock to slide past one another.  In the above picture the yellow arrows indicate the approximate orientation of the stresses that were applied to this boulder to create the sigmoidal veins.

Sigmoidal veins, at their inception, are shaped like parallel lines that bulge toward the center and taper at the ends.  They originate due to tension created between the two opposing forces acting on the rock.  Essentially the rock tears to alleviate this tension.  If the shearing continues long enough, these openings in the rock begin to rotate.  The eventual shape, seen above, is like the letter S.  The ends of each S point opposite of the direction of the force that created them.  Therefore, sigmoidal veins can indicate the forces at work on bedrock when it was buried underground.

The veins pictured here are at the edge of a parking lot next to the Arlington Hotel in Hot Springs Arkansas.  After they developed the veins were in filled with quartz.  The Hot Springs Sandstone is a member of the Mississippian Stanley Formation.

Geo-pic of the week: Ozark Plateaus

Ozark Plateau

If you live in Arkansas, chances are you’ve heard of the Ozark Mountains.  Actually, the correct geologic term is Ozark Plateaus.  Unlike typical mountains in which the bedrock has been squashed and folded, the Ozarks are one broad dome-like structure made up of flat-lying sedimentary bedrock.  The hills and valleys of the Ozark topography are the result of rivers carving into this dome, rather than compression or deformation.  

The picture above was taken overlooking the Buffalo River.  The various hills, from the foreground to the distance, are roughly the same height.  Of course they are!  If not for this and other rivers, the landscape pictured here would be one solid flat surface, as tall as the highest peaks in the picture, stretching to the horizon.  

Early map of Bathhouse Row, Hot Springs, Arkansas

HotSpringsCountyenhanced

(Click map to see large high-resolution version)

Untitled

(Click picture to see large high-resolution version)

 

At top is a scan of a hand-drawn map of downtown Hot Springs Arkansas ca. 1859.  It was drawn By Dr. David Dale Owen, the first State Geologist of Arkansas.   It shows Bathhouse Row, the area renowned for its hot mineral-water springs (a photo of the area depicted on the left side of the map is included for comparison).  Bathhouse Row remains a popular attraction today, though a lot has changed since 1859. 

Hot Spring Creek, which displays across the bottom of the map north to south (note that north is to the left here), now flows underneath Central Avenue in downtown Hot Springs.  Central Avenue is the street at the bottom of the photograph (see photo).  In 1860, there was no Central Avenue and people crossed Hot Spring Creek on wooden bridges (see map).  The bluff east of the creek from which the hot springs flow is now Hot Springs National Park.

This map was included in the second of two geological reconnaissance reports published by Dr. David Dale Owen concerning Arkansas geology.  During the field work for that publication in 1859, Dr. Owen, only fifty three years old, contracted malaria.  He died a short time later.  In the introduction to the final volume of that publication, Dr. Owen’s brother writes that David was dictating the report, from bed, until 3 days before his death. 

 

David Dale Owen portrait

Geopic of the week: Skolithos

 

st. pete skolithos

Skolithos is a common type of trace fossil that has been found in rocks as old as 541 million years.  Trace fossils are not the fossilized remains of organisms but rather the burrows, footprints, and other structures that resulted from the animal’s activities.

In the case of skolithos, it’s widely believed that a vermiform (resembling a worm) animal created the straight, vertical, tube structures.  These worm-like critters probably lived by filtering plankton from the turbulent water of a shallow marine environment.  The vertical tubes may have been a dwelling place to retreat to, though their specific purpose is not known.

In the above picture, captured in north central Arkansas, a sandstone has weathered to reveal skolithos traces permeating the approximately 460 million year old rock.  This example is from an exposure of the St. Peter Formation, Buffalo National River Park, Marion County, Arkansas.

To see more views of skolithos traces from Arkansas click here