Tag Archives: shale

Notes from the Field: Japton and Witter Quadrangles

 

Geologic mapping of the Japton and Witter 7.5-minute quadrangles was recently completed by the Arkansas Geological Survey’s STATEMAP field team. In Arkansas, the STATEMAP Program is currently focused on detailed 1:24,000-scale mapping in the Ozark Plateaus Region, located in the northern part of the state.

image

Figure 1. Japton and Witter Quadrangles on the 1:500,000-scale Geologic Map of Arkansas (Haley et al., 1993)

Japton_final-red.jpg

Geologic Map of the Japton Quadrangle, Madison County, Arkansas. Download a digital copy at:

http://www.geology.ar.gov/maps_pdf/geologic/24k_maps/Japton_24k_geologic.pdf

Geological Map of the Witter Quadrangle

Geologic Map of the Witter Quadrangle, Madison County, Arkansas.  Download a digital copy at:

http://www.geology.ar.gov/maps_pdf/geologic/24k_maps/Witter_24k_geologic.pdf

STATEMAP is a cooperative, matching-funds grant program administered by the U. S. Geological Survey. The goal of the program is to classify surface rocks into recognizable units based on a common lithology–basically, an inventory of surface materials. Also, we strive to locate and depict any structural elements that may have deformed the rocks. The rock units are classified into formations and members, and structures are described as synclines, anticlines, monoclines, and faults. During the project, a rich dataset was recorded in the field using a portable data collector/global positioning satellite receiver as well as by traditional methods. This made possible a more detailed depiction of geological and structural features and a more comprehensive description of lithology than previous studies had done. Data collection included:

  • 629 field locations recorded and described in detail
  • 3,385 photographs taken at recorded field locations
  • 72 strike and dip measurements, most depicted on the maps
  • 950 joint orientations, depicted in a rose diagram of strike frequency
  • 1 shale pit
  • 8 springs, previously undocumented
  • 108 rock samples collected and described

The new map is useful to landowners interested in developing their land for personal or commercial purposes, to scientists seeking a better understanding of landscape evolution and geologic history, and to planners responsible for resource development and mitigating environmental impacts.

Angela Chandler, Principal Investigator for the project, wrote the grant for fiscal year 2018 and we received funding adequate to produce two maps.  Two geologists, Richard Hutto and Garrett Hatzell, began their field season last July and after putting in 76 days in the field, concluded that portion of their work in February of this year. The area of investigation lies within the Interior Highlands Physiographic Region in north Arkansas, specifically the Boston Mountains Plateau portion of the Ozark Plateaus Province. Previous work by the AGS in this area had been done in preparation for the 1:500,000-scale Geologic Map of Arkansas by Haley et al. circa 1976 (see Fig. 1). That mapping project delineated five stratigraphic units in this area, but through extensive field reconnaissance, we were able to define ten units on these maps at the 1:24,000 scale. Further division is possible, but several units were considered too thin to depict on the 40-foot contours of the topographic map currently available, or too difficult to delineate by lithology alone.

Several tributaries of the White River are located on these quadrangles including Lollars Creek, Drakes Creek, and War Eagle Creek. The White River is a major water resource in Arkansas and southern Missouri, and as such we need to learn as much as we can about this important watershed. Included in the field work was hiking, wading, or swimming the entire 13-mile stretch of War Eagle Creek located within the Witter quadrangle, the 10 miles of Lollars Creek within the Japton, and many smaller drainages. The reason we concentrate our efforts on stream beds is that there, erosion has typically removed soil and loose rock leaving well-exposed outcrops of bedrock for us to study. Also, being able to see the entire stack of the rock sequence as we move up or downstream helps put each formation in context with the others. Discovering where one formation contacts another is one of the most important things we do while mapping. Because formations are laterally extensive, similar contacts can be connected into a contact line separating one formation from another. Figuring out where to draw these lines on the map is a major goal of the project.

From mid-February through the end of June, we analyzed field data, classified rock specimens, drew formation contacts and structures on the map, then handed it off to our cartography staff to digitize. Final layout and production of the maps was accomplished by the geologists, after which they were subjected to an extensive review and editing process by fellow staff.

The following images were taken during this year’s field season. Hopefully, they will provide a small glimpse into some of what we were privileged to experience in the field this year.  They are arranged in stratigraphic order from youngest to oldest:

Alluvium in War Eagle CreekDSCN1957[14]

Alluvium in War Eagle Creek (left). Landslide on Highway 23 above Dry Fork (right).

DSCN0110

Ball and pillow structures in the Atoka Formation in Drakes Creek.

Herringbone Crossbeds in AtokaDSCN1357DSCN1353

Sequence of photos zooming into herringbone cross-beds in the Greenland Member of the Atoka Formation.

DSCN0602

Large blocks of Kessler Limestone sliding into Lollar’s Creek.

DSCN2294DSCN2258DSCN2279

Sequence of photos zooming into oncolitic limestone of the Kessler Member of the Bloyd Formation. The oncolite pictured far right is nucleated on a tabulate coral.

DSCN1057

Lycopod (tree-like plant) fossil weathering out of the Dye Shale.

Top of the Parthenon sandstone in Lollar's CreekDSCN0491

Top of the Parthenon sandstone (Bloyd Formation) in Lollar’s Creek (left). Parthenon resting on the Brentwood Limestone (Bloyd Formation) with travertine precipitating at the drip line (right).

DSCN0319DSCN0773

Siltstone unit in the upper Brentwood Limestone. Cross-bedded (left) and bioturbated (right). 

DSCN0065

Biohermal mounds in the Brentwood Limestone in Jackson Creek.

DSCN3028

Massive bluff of limey sandstone in the Prairie Grove Member of the Hale Formation.

DSCN3307DSCN2742

Sandy limestone in the Prairie Grove. Stream abrasion has revealed cross-bedding (left) and an ammonoid (right).

DSCN1710DSCN1753

Typical thin-, ripple-bedded sandstone of the Cane Hill Member of the Hale Formation (left). A basal conglomerate in the Cane Hill contains fossiliferous and oolitic limestone pebbles and fossil fragments (right).  This unit probably rests on the Mississippian-Pennsylvanian unconformity.

DSCN1799

The Pitkin Limestone in War Eagle Creek.

This year we will be mapping the Weathers quadrangle which is just east of the Witter, and the Delaney quadrangle which is just south of the Durham (which we mapped two years ago). The Kings River flows through Weathers, so this should be a good place to start while river levels are low (and it’s so hot!). I will update you as I can, but until then, I’ll see you in the field!

Richard Hutto

Advertisements

Geopic of the week: Waterfalls

petit jean 005edited

Everyone knows that a waterfall is a place where a river or creek flows over a vertical drop-off, but did you know that there is a geologic reason why they form?  A waterfall, like Cedar Falls pictured above, forms where a hard, resistant rock such as sandstone overlies a soft, easily eroded rock like shale.  The difference in the rate each rock type weathers is what creates the waterfall.

When a stream passes over a single rock type, it erodes it evenly, carving a channel with a gradual slope.  However, when a stream’s course passes from a hard to a soft bedrock, it scours the soft rock at a faster rate.  As the supporting soft rock is eroded, the overlying harder rock progressively collapses, creating a vertical bluff over which the stream flows.  As this process continues an ever taller waterfall develops, and the location of the waterfall gradually migrates upstream.

Because we know how landforms such as waterfalls form, geologists can use tools, like aerial photographs and satellite images, to predict what kind of rock will be in an area before ever going there.

Geopic of the week: injection feature

 

Sandstone injection feature hollywood quarry

Pictured above is what geologists term an injection feature or sand dike.  It formed when sand was violently forced upward into overlying clay before the sediment was cemented to form rock.  In environments where sediment is accumulating very quickly, water can get trapped and buried in a sand body;  as more sediment is deposited on top of the sand, the pressure causes the sand body to compress.  When water erupts upward to relieve the pressure, it carries sand with it which fills the fissure created by the escaping water. 

Geologists look for clues like injection features when trying to unravel the mystery of what conditions were like when a rock was deposited.  This particular rock is part of the Jackfork Formation which is exposed at the surface around Little Rock Arkansas and surrounding areas; it was deposited when the area was at the bottom of a deep ocean basin more than 300 million years ago.  Ink pen is for scale.

Geopic of the week: Turbidite deposits in Baumgartner Quarry

The Baumgartner quarry is located a little South of Kirby Arkansas along highway 27 in the Ouachita Mountains.  It exposes approximately 160 m. (590 ft.) of the upper Jackfork Formation which consists of interbedded sandstone and shale deposited  about 300 million years ago when the area that is now the Ouachita Mountains was a deep ocean basin.  Deep oceanic deposits such as these are the kind petroleum geologists explore for oil.  Because these deposits are exposed at the surface in southern Arkansas, geo-scientists from all over come here to study our rocks and gain a greater understanding of the deeply buried rocks they look for oil in in places like the Gulf of Mexico.  This is a view looking west along strike.

DSCN0777

Statemap Field Blog, April 7-9, 2014

2014-04-07 006

Hello all,

Well, this is the last week of field work for the 2013-14 season.  Of course, there’s always more one would like to have a look at, but we have to stop sometime.  On Monday, we started down by the M&NA railroad bridge at Shirley.  The big fault that makes the SW/NE lineation goes through here somewhere, but it’s difficult to say where exactly.  There are lots of non-vertical joints and deformation bands in the area, which are all good fault signs, but nothing very definitive.  The area north of the bridge is about as thick as it could possibly be with greenbriers –only passable with much effort and many scratches.  We saw very thick-bedded sandstone there which we took for Witts Springs that day, but when we came back on Wednesday, we decided it may be north of the fault, and therefore would be Imo.  We have Imo across the valley, so it’s not out of the question to have it here, but it may be just a relatively thin slice.  There are many cut and fill channel beds there, some of them with very nice soft-sediment deformation at the margins.

On Tuesday we finished up some loose ends in the northwest corner of the Shirley quad.  After we climbed way down in a hollow that had an old tornado track going through it, Danny realized he had lost his camera somewhere.  We hiked back up to the Jeep to see if it was there (it wasn’t), then retraced our steps from earlier that morning.  Still nothing.  He remembered the last time he had used it was in that horrible briar patch the day before, so after we climbed out again, we headed back there.  Sure enough, in the thickest part of the patch, where he had been practically crawling to get through, a briar had reached in his carrying case and pulled it out.  It was still dangling there about a foot off the ground right on the river bank.  At least we got it back!

Deformation bands in massive sandstone near Middle Fork north of Shirley2014-04-07 017

2014-04-09 026 2014-04-09 011On Tuesday afternoon, we went down a drainage on the west side of Middle Fork looking for more signs of a fault we have traced from the Old Lexington quad.  We definitely found a lot of deformation bands in the Witts Springs massives down there and figure there might be as much as 80 feet of throw on the fault.

2014-04-08 0192014-04-08 027Wednesday was our last day in the field this year, and we spent most of our time on the Middle Fork just north of Shirley where we had left off on Monday.  Did look like the fault goes through there because we found very-thick bedded massives on the north side (Imo) and shale interbedded with very thin-bedded sandstone on the south side (Cane Hill).  Our last couple of hours we spent getting points in several road cuts in and around Shirley.  We took a final photo in front of the town sign.

2014-04-08 048 (2)2014-04-09 047This will be Danny’s last year out in the field with me, so I’d like to take this opportunity to thank him for putting up with me and the sometimes horrendous field conditions we’ve faced together the last five years.   Looks like I’ll have to break in a new field partner next year, so should be interesting.  Now comes the time of year when we have to sit in the office and draw the maps, create the layouts, and finish the database, all to be turned in to the USGS by June 30.  It seems like a long time, but we’re always editing down to the last minute.  By the time we make it back out in the field, it will be mid-July, so the ticks and snakes will be out in full force, it will be nice and hot, and all the vegetation will be full grown.  At least that gives us something to look forward to.  Until then, I’ll see you in the office.  After that, I’ll see you on the outcrop!

 

 

 

Statemap Field Blog March 24-26, 2014

Taphoni (honeycomb weathering) in massive sandstone.

Taphoni (honeycomb weathering) in massive sandstone.

Hello all!

Sorry about that long hiatus, but I had a couple of extra projects the last couple months that took a lot of extra time.  We’ve been in the field almost every week except for March 3-5 during the 3 inch snow in Van Buren County.  We’ve mostly worked on the Fairfield Bay quad during the last few weeks.  This week was spent tracing a very thick-bedded, massive sandstone unit through the town of Fairfield Bay itself.  It is quite an impressive bluff-former and actually underlies almost the entire Mountain Ranch golf course.

2014-03-24 017

Danny descending treacherous massive sandstone outcrop

2014-03-24-002.jpg

Danny contemplating how this massive sandstone can all but disappear a few hundred yards north of here

 

2014-03-24 028

Grotto in massive sandstone

2014-03-25 001

Most hillsides are composed of a thick sequence of very thin sandstone/siltstone and shale–easily erodible

 

Apparently some structure or perhaps a change in depositional environment made this sandstone climb up 200 feet to the east.  There it forms the cap of the ridge on which the small town of Fairfield Bay sits.  Moving east again, It underlies the Indian Hills Country Club where weathering (and earth-moving equipment) has produced the famous Indian Rock House on the golf course there.  Underlying that massive across the entire area is a very thick sequence of very thin-bedded sandstone/siltstone/shale.  A lot of the roads built in this unit have formed deep gullies making some of them impassable.  Still, there is better access in this area than most that we map, so we’re thankful for that.  Only about two weeks left of the field season.  We’ll probably be jumping around a lot to work out problem areas on both quads during that time.

See you on the outcrop!

2014-03-26 009

Danny actually seeing through the groundcover to the rock beneath the Mountain Ranch golf course

 

 

 

 

 

Statemap Field Blog—Dec. 2-4, 2013

2013-12-02 031

Hello all!

This week we finished up a few odds and ends on the Shirley quad.  We needed to get to a few suspected outcrops along the north side of the Middle Fork just east of Shirley.  As we were looking for a way to access them, we stumbled upon the Sid Burgess Historic M&NA Trail which starts in downtown Shirley and ends up about a mile distant at the historic Cottrell-Wilson Cemetery.  As luck would have it, this trail happened to access the very areas we needed to see.  If you’re ever in Shirley, it’s definitely worth checking out!

2013-12-02 0112013-12-02 0152013-12-02 018

We saw mostly thin-bedded sandstone and shale units of the same variety as on the south side of the Middle Fork and Weaver Creek upstream.  There are a few low dips toward the lineation, but nothing indicating a major structure.  I’m thinking this may all be the unit above the Witts Springs (Bloyd Formation) brought down to the southeast by a monocline.  The trouble is, we don’t really know what the Bloyd/Witts Springs contact looks like in this area yet.  That’s something we still need to work out.

Tuesday was wet again, but we set out to finish up the southernmost branch of Lost Creek anyway.  Seems to be mostly Witts Springs in there with some Cane Hill at the bottom of the valley.  We saw some great examples of soft-sediment deformation in some of the silty units on the way down.  Soft sediment deformation occurs during sedimentation when the rapid loading of usually more dense, overlying sediments causes the less dense, buried deposits beneath them to become partially liquefied, which forms various types of disruptions in the original bedding.  This can take the form of simple reorientation of the bedding as we have here, to more complex convolute bedding and flame structures.  I took a photo later in the week of a good flame structure in the Bloyd Formation.  Notice where the shale has been squeezed up between the thick, contorted beds of sandstone.

2013-12-03 0072013-12-04 019

Several massive calcareous sandstone units in the Witts Springs again illustrated the dramatic difference between outcrops weathered with and without the influence of groundwater.  Notice how rotten the outcrop of massive sandstone in the photo below left appears.  Also note the green color.  There is a layer of moss and lichen growing over almost the entire rock surface, made possible by its relative saturation by groundwater.  These organisms help accelerate the weathering of the rock, and there are places where you can actually see clumps of moss peeling off the surface along with a layer of sand.  This type of chemical weathering is known as chelation and results in the effective removal of the residual iron cement still holding the rock together after the calcite cement has been dissolved by groundwater.  The photo below right shows how “dry weathering” of a boulder of the same material can result in well-defined liesegang bands.  Highly concentrated iron has cemented these bands within the massive sandstone, and without the influence of groundwater, they are preferentially resistant to weathering, leaving them in bold relief.

2013-12-03 015

2013-12-03 034

On Friday, we looked at some of the last steep areas we haven’t vistited north of the Middle Fork east of Shirley.  Definitely still have Witts Springs right down to the river there, but there is also a thin- to very thick-bedded unit above it that is probably in the Bloyd.  We saw a fairly recent landslide above the river composed of material from that upper unit.  There was also a good cut and fill channel bed exposed in that unit as well.

2013-12-04 0052013-12-04 0142013-12-04 0152013-12-04 020

It was warm enough for the critters to be out again this week.  Just when I thought it was safe to put my foot down anywhere I pleased, I nearly stepped on a moccasin.  That’s him slinking back in his hole.  We also saw a western slimy salamander (plethodon albagula?) under some storm debris, which was subsequently replaced.

2013-12-04 0032013-12-03 046

Hopefully the warm weather holds out, but the forecast says the bottom may drop out on Friday.  We’ll see!

Until next week, see you on the outcrop!