Geo-pic of the week: Pyritized Ammonoid

ammanoid cropped

Pictured above is the internal mold of an ammonoid fossil – a group of invertebrate marine animals abundant in the world’s oceans from 416 – 66 million years ago.  They died during the same mass extinction that killed the dinosaurs.

Ammonoids were not stationary bottom dwellers, but had an interesting way of getting around in the water.  Their shells were partitioned into chambers, which are evident in the picture above.  The squid-like ammonite only occupied the final chamber of the shell.  The rest were empty so that the animal could control its buoyancy, and swim by taking in and expelling water.

Because ammonoids were abundant, widespread, and evolved new species quickly, geologists use their fossils to correlate rock units of similar age worldwide.  This one was collected from the Fayetteville Shale in northwest Arkansas.  Its gold color is due to the original organic material having been replaced by pyrite – also known as fool’s gold.

Archimedes in Pitkin Limestone

Notes from the Field

 

The Pitkin Limestone

One of the most fossiliferous formations in the state is the Pitkin Limestone. It was referred to as the Archimedes Limestone in the late 1890s because it contains an abundance of the screw-shaped bryozoan fossil Archimedes. It was formally named the Pitkin Limestone in 1904 for exposures near Pitkin Post Office in Washington County, Arkansas. If you can’t find the town of Pitkin on a map, don’t worry–it’s now known as Woolsey.

The Pitkin began as carbonate sediments deposited in the Mississippian Period around 320 million years ago.  At that time, northern Arkansas was covered by a shallow sea that was fairly close to the equator.  Warm, shallow seawater is a prime environment for the build-up of carbonates.  Marine organisms extracted calcium carbonate out of the seawater to form shells or other hard parts.  This material accumulated and eventually turned into limestone.  Some of those secreted structures are preserved as fossils in the rock and are clues to the environmental conditions that existed at the time.

The Mississippian in Arkansas

The area of what is now Arkansas during the Mississippian

The Pitkin Limestone is a bluff-former that crops out in the southern portion of the Ozark Plateaus from just south of Fayetteville eastward to Batesville, typically along the Boston Mountains Plateau Escarpment.  It is mostly limestone, however, there is some nodular black chert present locally.  Black shale intervals are common in the eastern portion.  Because limestone is a soluble rock, karst features such as caves, sinkholes, springs, and disappearing streams are common in this Formation.  About 9% of the known caves in Arkansas are in the Pitkin.  Its thickness varies from an average of about 50 feet on the west side of the state to about 200 feet in the eastern part with a maximum of about 400 feet in the central portion.  It typically rests on the Fayetteville Shale and is overlain by the Cane Hill Member of the Hale Formation in western Arkansas and by the Imo interval from the area of western Searcy County eastward.

Geologic Map of Arkansas-detail

The Pitkin outcrop belt is within the light-brown area in this Ozark Plateaus detail of the Geologic Map of Arkansas

To download the entire Geologic Map of Arkansas, click here: http://www.geology.ar.gov/ark_state_maps/geologic.htm

Cane Hill/Pitkin Contact near West Fork

The Cane Hill overlying the Pitkin near West Fork, Washington County

Pitkin/Fayetteville Contact at Hwy 65 Roadcut

The Fayetteville underlying the Pitkin near Marshall, Searcy County

Pitkin top in Little Red Creek

Top of Pitkin in Little Red Creek near Canaan, Searcy County

Now, let’s look at fossils commonly found in the Pitkin.

Archimedes in Pitkin-Batesville Archimedes in Pitkin-Fayetteville

The photos above contain fossils of Archimedes.  The fossil is named for the ancient Greek engineer who invented a device that incorporated a large screw to lift water for irrigation.  The left photo was taken south of Batesville and the right photo was taken south of Fayetteville.  It’s remarkable that these fossils are so persistent along this great extent.  Although this fossil is characteristic of the Pitkin, it can also be present in adjacent formations.  The illustration below is a sketch of a fenestrate Bryzoan of which Archimedes is a type.

Fenestrate Bryzoan

Archimedes as it may have appeared in life

Crinoid stems and Columnals-Batesville Crinoid Stems-Batesville

Pieces of fossilized Crinoids are also abundant in the Pitkin.  Most commonly, small button-shaped pieces of the stem and arms, known as columnals, are preserved in the limestone.  That is a columnal in the center of the left photo.  The larger crinoid fossils above were preserved in shale and were most probably washed onto a mud flat during a storm event.  These photos were taken south of Batesville, but crinoid detritus is abundant throughout the Pitkin and most other limestone in Arkansas.

Crinoid

Crinoid as it may have appeared in life

A great location to see the Pitkin is along Richland Creek at its confluence with Falling Water Creek.  When the creek level is low, you can hike upstream from the campground and see many fine exposures of Pitkin Limestone in the creekbed.  Locally, colonies of tabulate and rugose coral were preserved in the Pitkin and can be discovered upon close inspection of the outcrop.

Moore Quadrangle-detail

Detail of Geologic Map of the Moore Quadrangle showing Pitkin along Richland Creek (Mp=Pitkin)

To download the entire Geologic Map of the Moore Quadrangle, click here: https://ngmdb.usgs.gov/Prodesc/proddesc_76560.htm

Tabulate Coral in Pitkin Limestone

Tabulate or colonial coral in the Pitkin Limestone along Richland Creek.

Rugose Coral Colony in Pitkin Limestone

Rugose coral in Pitkin

Locally, the Pitkin consists of oolite, a type of sedimentary rock composed of ooliths.  Ooliths are small, spherical structures (<2 mm) that form by accretion of numerous concentric layers of calcite on a central nucleus such as a shell fragment or sand grain.  The environment of deposition would have been areas where strong bottom currents or wave action rolled the fragment around in carbonate-rich sea water.  This would include environments like beaches and tidal flats.

Oncolites and stromatolites are also preserved in the Pitkin.  They have a similar structure to ooliths, but are much larger (up to 10 cm), can be round or irregular-shaped, and are formed by a different mechanism.  Like ooliths, they nucleate on a shell or other fragment, but are built up by encrusting layers of blue-green algae or cyanobacteria.  Stromatolites form in much the same way,  but create columns, mats, or large heads.  Stromatolites and oncolites typically indicate a paleoenvironment of warm, shallow water in a calm sea, lagoon, or bay.

Oolitic Pitkin

Oolitic Pitkin

Oncolitic Pitkin

Oncolitic Pitkin

Stromatolitic Pitkin

Stromatolitic Pitkin

During fieldwork for our geologic mapping, finding Pitkin Limestone is always exciting because there is something new and interesting to discover every time.  We hope this brief introduction to one of Arkansas’ most intriguing formations has convinced you to seek out the Pitkin and have a closer look.

Until next time, we’ll see you on the outcrop!

Richard Hutto, Angela Chandler

Geo-pic of the week: Zebra Weathering

Zebra weathering enhanced

Pictured above is an exposure of Prairie Grove Sandstone near Durham, Arkansas, southeast of Fayetteville.  The ribbed, planar faces that are central in the photo resulted from a weathering phenomenon called zebra weathering.

Zebra weathering occurs in sandstones cemented with calcite – a soluble mineral.  Calcite is common in marine sediment and, in the tidal environment where this rock was deposited, marine sediment mixed with insoluble sand from the continent.   The ratio of marine sediment to sand changed continuously in that environment due to seasonal and climatic cycles.  Today, the beds of sandstone weather at different rates depending on their calcite content.  As the rock weathers, the sandier beds stand out in relief since they wear away more slowly than the soluble beds between them.  Hence, the banded zebra pattern.

Geo-pic of the week: Frankenstein scar on stylolite

Frankenstein boxwork on stylolitic surfaceBoris-Karloff-Frankenstein

I was working near Lake Fort Smith State Park this last week when I came across a peculiar mineral deposit resembling Frankenstein’s Scars (Fig. 2).  It was just in time for Halloween!  The resemblance is uncanny.  Despite the horror, there is a lot of geology illustrated in this rock. 

The mineral that forms the “scars” seen in the photo is called limonite, and it was deposited within a cavity in a stylolite.  A stylolite is a surface, typically a bedding plane, that has recrystallized due to pressure from the weight of overlying rock material.  Stylolites can be recognized by their rough, jagged appearance (it’s difficult to see in this photo, but trust me – it’s there).  The limonite “scars” formed in a pattern called boxwork and, surrounding the boxwork, limonite is also present in botryoidal form: a crystal shape resembling small round globs (the orange goosebumps around the scars).

At this time, rocks are not thought to celebrate Halloween, although more work needs to be done to verify that.

Geo-pic of the week: Conostichus trace fossils

Conostichus topConostichus bottom

Above are two pictures of a trace fossil, Conostichus, from the Ozark Plateaus region of Arkansas.  Like other trace fossils, Conostichus are structures found in sedimentary rock that represent the spot where an animal lived, fed, or travelled.  Despite their abundance, especially in rocks of the Carboniferous period (299 to359 million years ago), it’s not certain what kind of animal made Conostichus, because the animal’s body wasn’t preserved. 

The upper picture is the top of the Conostichus and shows the hole through which the animal entered or exited the structure.  The lower picture is the same Conostichus with the top facing down.  As you can see, they taper and come to a rounded point at the base, vaguely resembling a badminton birdie.  

At present, the most widely accepted theory for their origin is that Conostichus are burrow traces left by Sea Anemone.

Geo-pic of the week: Pinnacle Mountain

Pinnacle closeup edited (1)

This is a picture of Pinnacle Mountain – one of several steep-sided hills up to about 1000 feet tall, located at Pinnacle Mountain State Park, northwest of Little Rock, Arkansas.  Though its appearance may be misleading and its origin is debatable, Pinnacle Mountain is not a volcano!

What’s intriguing about Pinnacle and the smaller nearby hills is that they’re sandstone lenses surrounded by shale.  That, from a geologic perspective, is difficult to explain since sedimentary rocks are suppose to form in layers, not lenses or blocks.  This has led geologists to a variety of interpretations for their origin ranging from giant undersea landslides, to sand that got trapped in the empty gouges left by large undersea landslides, to beds of sandstone caught up and scrambled with shale beds along huge thrust faults.

Whatever their origin, because they are sedimentary rock and contrary to some satirical publications I’ve seen circulating online, they are not volcanoes and they are not going to blow up!

Geo-pic of the week: Satin Spar

Satin spar1 edited

Satin spar is a variety of the mineral gypsum and, aside from it’s attractive fibrous appearance, it’s used for many practical purposes, including for making plaster, chalk, and drywall.  Some ideally suited varieties are carved by sculptors.  This piece was collected from a gypsum mine in Howard County, Arkansas, near the town of Nashville, where it’s mined and processed to make drywall.

Around 100 million years ago, the water of the Gulf of Mexico reached all the way to southern Arkansas, forming a huge marine bay.  Because that water was somewhat isolated from the ocean’s circulation, evaporation concentrated dissolved minerals there, to the point that the water became oversaturated and minerals, such as gypsum, began to crystallize out of it.  It’s the same process by which most of the world’s salt deposits formed.  In fact, gypsum is often found associated with salt.