Geo-pic of the week: Tempestite

tempestite

A tempestite, like the one pictured, is a rock composed of debris deposited by a storm.  It’s mostly a sandstone but also contains various fossils, pebbles, and other clasts that were picked up and tossed about by the waves.

Waves are generated as wind energy is transferred to water.  Naturally, during a storm, waves are bigger and more energetic.  This increased energy allows the waves to pick up, and in some cases rip up, various relatively large clasts and fossils and transport them.  The large elongate fossil above is an extinct squid-like creature known as a conical nautiloid.  Other marine fossils in this sample include gastropods, and crinoids.  It also contains plant material.

The presence of tempestites in a rock outcrop indicate the area was a shallow marine environment when those rocks were being deposited.  This sample was collected in Northwest Arkansas from the Pennsylvanian Prairie Grove Member of the Hale Formation.

Advertisements

Geo-pic of the week: Oncolite

DSCN2293

Oncolite is a limestone made of oncoids, the roundish, tan things in the picture (average size less than an inch).  Oncoids are made by microbes called cyanobacteria.  Cyanobacteria, which also form larger mounds called stromatolites, are thought by many scientists to be one of the earliest forms of life to evolve on Earth.

The microbes attach to a nucleus – in this case fossil fragments – and encrust it in layers of calcium carbonate.  The bacteria gather energy by photosynthesis and, thus, require access to the sun.  Because they are easy to recognize and mostly limited to shallow marine environments, oncolites are useful to geologists, both as a stratigraphic marker and as an indicator of the depositional environment of the rock they are preserved in.    

These were photographed in the Kessler Limestone Member of the Bloyd Formation, northwest Arkansas.

Sandstone Paleokarst

If you have spent any time on Beaver Lake in northwestern Arkansas, then you have probably seen sandstone paleokarst features.  Some stand tall like towers while others appear to be irregular to rounded masses.  It is common to see only the tops of these features when the lake level is low to normal.

 ss paleokarst photo    Top of sandstone mass in Beaver Lake.  Photo taken in October, 2016.

ss paleo 2-01  Sandstone mass along Beaver Lake.  Photo taken in October, 2016.

These features have been in geology literature since 1858 when David Dale Owen made his first geological reconnaissance of the northern counties.  He described a mass of isolated sandstone within adjacent magnesian limestone (now called dolostone) which stands out forming a conspicuous feature in the landscape.  Purdue, 1907, called them cave-sandstone deposits and was the first to consider them paleokarst.  Purdue and Miser, 1916, noted many of these deposits and concluded several were ancient sinkholes that had been filled with sand.  Two theses that pre-date the construction of Beaver Lake (Arrington, 1962, and Staley, 1962) mention numerous sandstone bodies within the Powell.  One very large sandstone mass was seen in the White River (Arrington, 1962).  It is approximately 45 feet tall!  Unfortunately, it is now covered with water.

photo       Sandstone mass in Carroll County.  From Owen, 1858

photo2 Sandstone mass in the White River near Hwy 12 access to Beaver Lake.  From  Arrington, 1962.

So how did these features form?  First, let’s define paleokarst.  Paleokarst consists of karst features that formed in the geologic past and were preserved in the rock record.  Karst features include sinkholes, springs, and caves.  These features form when acidic rain and ground water dissolves carbonate rocks (mainly rocks that contain calcium carbonate – calcite, or calcium-magnesium carbonate – dolomite).

The majority of sandstone masses are surrounded by dolostone, composed of dolomite, in the Powell Formation.  The Powell is Lower Ordovician in age, meaning it formed around 470 million years ago (mya).  It is likely that this formation was exposed to weathering at that time.  Depressions of various size, called sinkholes, developed on the exposed land surface.  Later, sand filled the depressions and eventually became rock called sandstone.  The age of the sandstone masses ranges from Middle Ordovician (approx. 450 mya) to Middle Devonian (approx. 390 mya).  Therefore, there is a gap in the rock sequence, between dolostone in the Powell and the sandstone, called an unconformity, lasting from 20-80 million years.

ss mass 3-01Sandstone mass (center) surrounded by Powell dolostone along Beaver Lake.  Photo taken in September, 2016.

Why is paleokarst important, other than being interesting features to observe?  Paleokarst provides clues to former geologic conditions and changes in climate and sea level (Palmer and Palmer, 2011).  We know that sea level was high in the Lower Ordovician and shallow seas covered all of northern Arkansas.  But, in the Middle Ordovician, sea level lowered and the sandstone paleokarst features provide additional evidence supporting this change.

Many sandstone paleokarst features were located while mapping the War Eagle quadrangle.  Fifty-two sandstone masses were located around Beaver Lake.  This is not a complete list, however, since the main focus of mapping was not a paleokarst inventory.

paleokarst points    Sandstone masses (yellow) located from recent geologic mapping around Beaver Lake.

The War Eagle quadrangle was mapped in preparation for State Park Series 4 – Geology of Hobbs State Park.  Follow the link below to see the geologic map of the War Eagle quadrangle:  http://www.geology.ar.gov/maps_pdf/geologic/24k_maps/War%20Eagle.pdf.

Until next time,

Angela Chandler

 

References:

Arrington, J., 1962, The geology of the Rogers quadrangle:  University of Arkansas M.S. Thesis, 61 p.

Palmer, A.N., and Palmer, M.V., 2011, Paleokarst of the USA:  A brief review:  in U.S. Geological Survey Karst Interest Group Proceedings, Fayetteville, Arkansas:  U.S. Geological Survey Scientific Investigations Report 2011-5031, p. 7-16.

Owen, D.D, 1858, First report of a geological reconnaissance of the northern counties of Arkansas made during the years 1857 and 1858:  Little Rock, 256 p.

Purdue, A.H., 1907, Cave-sandstone deposits of the southern Ozarks:  Geological Society of America Bulletin, vol. 17, pp. 251-256.

Purdue, A.H., and Miser, H.D., 1916, Geologic Atlas of the United States, Eureka Spring-Harrison Folio, Arkansas-Missouri:  U.S. Geological Survey Folio No. 202, 82 p.

Staley, G.G., 1962, The geology of the War Eagle quadrangle, Benton County, Arkansas:   University of Arkansas M.T. Thesis, 56 p.

 

 

 

Geo-pic of the week: Pennsylvanian plant fossil

Tree_full_picture

P8256457P8256458

Above is several pictures of an unidentified plant fossil found in NW Arkansas this past week in the Dye Shale Member of the Bloyd Formation.  The fossil is mostly pyrite with an outer coating of calcite (gray crust).  It was found in a shale unit and the original plant, or tree, has been squashed by the weight of sediment above it.

At just over 6 feet long and less than an inch thick, it’s an unusually well preserved fossil, especially considering the Dye Shale isn’t known to contain many fossils.  It’s also a marine unit and this is certainly a terrestrial plant.  Perhaps it was washed in to the environment during a storm and rapidly buried, which led to its preservation.  There are no obvious places where branches or leaves might have attached to the trunk and it has a distinct bark pattern that is unlike the well-known plants of the Pennsylvanian Period, such as lycopods, Lepidodendron, or Calamites

If any fossil savvy readers have a suggestion for its identity, feel free to pass it along.  Otherwise, we’ll keep looking into it.

Geo-pic of the week: Folded Rock In 3 Dimensions

 

folded rock together cross sectionfolded rock cross section close up

                                                         

Above are several images of the same rock sample: a highly deformed quartzose siltstone collected from the Womble Formation, Ouachita Mountains, Arkansas.  The uppermost image shows a cut and polished surface.  The green line that’s been added to the picture defines a fracture that split the sample after it was cut.  Ordinarily, that would be a bitter turn of events but, in this case, it was a fortunate accident.  The fracture provides a rare, multi-dimensional view inside a tightly folded rock (lower photo).  Luckily, the fracture propagated across the bedding rather than breaking along a bed, which makes the beds of the fold appear to fan out like a deck of cards showing a lot of the detail of the structure. 

Geo-pic of the week: Dogtooth Calcite

dogtooth2E

(FOV approx. 10 cm, photo by Corbin Cannon)

Even though they might look like it, those crystals in the picture above didn’t come out of a dog’s mouth. They are crystals of dogtooth calcite. Calcite (CaCO3) is the primary mineral that makes up limestone. It occurs in several crystal shapes. The two most commonly found in Arkansas are 6 sided rhombohedrons and the scalenohedral shape you see above. When it forms in this scalenohedral crystal structure it is called “dogtooth spar”.

Calcite is a very common mineral, but this particular crystal form of the mineral is typically only found in Arkansas in conjunction with the minerals sphalerite (zinc ore) and galena (lead ore) in the lead and zinc districts. Calcite is also a polymorph, like the mineral brookite from a previous geo-pic. This means calcite has “sister” minerals with the same chemical composition, but differing crystal structures. The three polymorphs of CaCO3 are: calcite, aragonite, and vaterite.

Cannon Creek Waterfall at Parthenon/Brentwood Contact

Notes from the Field-Durham Quadrangle

 

Geologic Map of the Durham Quadrangle, Madison and Washington Counties, Arkansas

Geologic mapping of the Durham 7.5-minute quadrangle in northwest Arkansas was recently completed by the STATEMAP field team.  STATEMAP in Arkansas is currently focused on detailed 1:24,000-scale mapping in the Ozark Plateaus Region in north Arkansas.  It is accomplished through a cooperative matching-funds grant program administered by the US Geological Survey.   Field work was performed between July and February, and included hiking/wading/swimming the entire 12-mile stretch of the upper White River located on the quad.  Previous mapping delineated five stratigraphic units for the 1:500,000-scale Geologic Map of Arkansas, but at the 1:24,000 scale, we were able to draw ten. Further division is possible, but several units were considered too thin to map on the available 40-foot contour interval.

You can download your own copy of the map at this link:

http://www.geology.arkansas.gov/maps_pdf/geologic/24k_maps/Durham.pdf

 

DurhamStratColumn

Generalized Stratigraphic Column of Durham Quadrangle

The Drakes Creek Fault, which runs diagonally from the southwest corner to the northeast corner, is the most striking feature on the map.  It is part of a major structural feature in northwest Arkansas, forming a lineament that can be traced at the surface for over 45 miles.  The Drakes Creek displays normal movement, is downthrown to the southeast, and offsets strata an average of 230 feet.  Associated with the fault on the northwest side is a large drag fold. There, rocks parallel to the fault are deformed such that units typically present at higher elevations away from the fault bend down to a much lower elevation next to the fault.  Erosion along this side of the fault has exposed the core of the fold along Fritts Creek, Cannon Creek, and other places.

image

Detail of Cross-section of Durham Quadrangle

The Durham quad is far-removed from areas of previous STATEMAP projects in north Arkansas.  We completed work on the Mountain View 1:100,000-scale quad last year, ending on the Brownsville quad near Heber Springs.  Focus has now turned to the Fly Gap Mountain 1:100K quad as the next high-priority area.  When completed, we will have continuous 1:24K coverage for a large portion of the central Ozark Plateaus Region.  The Durham quad was an appropriate choice to begin mapping in this area due to its proximity to designated type sections for many of the formations in north Arkansas.  This facilitated easy comparisons between our field observations on Durham with the classic outcrops where these formations were first described.  Initial field investigations included locating, describing, and sampling these historic outcrops near Fayetteville. We visited many places the names from which the stratigraphic nomenclature we still employ was derived.  These places have such names as: Bloyd Mountain, Kessler Mountain, Lake Wedington, Cane Hill, Prairie Grove, Brentwood, Winslow, and Woolsey.  Having seen the stratigraphy in these areas firsthand better prepares us to track changes in lithology and sedimentation as we continue to map to the east and south of Durham in the coming years.

The following images were taken during this year’s field season and are arranged in stratigraphic order from youngest to oldest:

DSCN6923

Liesegang boxworks–Greenland Sandstone.  Mapped into the Atoka Formation

DSCN7179

Asterosoma trace fossils–Trace Creek Shale of the Atoka Formation

DSCN6339

Kessler Limestone just below the Morrowan/Atokan Boundary–mapped into the Dye Shale of the Bloyd Formation

DSCN0706

Parthenon sandstone resting on the Brentwood Limestone, both of the Bloyd Formation.  The Parthenon was also mapped into the Dye

DSCN7923

Mounded bioherms in the Brentwood Limestone

DSCN4331

Tabulate coral colony in the Brentwood Limestone

DSCN7482

Herringbone cross-bedding in calcareous sandstone–Prairie Grove Member of the Hale Formation

DSCN5407

Goniatitic Ammonoids in calcareous sandstone–Prairie Grove

DSCN5535

South-dipping sandstone in the White River south of the Drakes Creek Fault–Cane Hill Member of the Hale Formation

DSCN5470

Soft-sediment deformation–Cane Hill

DSCN4033

Pitkin Limestone, below the Cane Hill near West Fork—Mississippian/Pennsylvanian Boundary

DSCN8341

A cluster of solitary Rugose corals–Pitkin Limestone

DSCN4565

Wedington Sandstone of the Fayetteville Shale at West Fork

DSCN4403

Base of the Wedington–mapped into the upper Fayetteville Shale

DSCN0763

Large septarian concretion–lower Fayetteville Shale

Img0033DSCN5622

Pyritized Holcospermum (seed fern seed-left) and goniatitic ammonoid (right)–lower Fayetteville Shale

DSCN5822

Boone Formation, along the White River in the northwest corner of the Durham quadrangle

This year, we’re moving east to map the Japton and Witter quads. Wish us luck as we begin a new field season.  We’ll try to keep you apprised, so until next time, we’ll see you in the field!

DSCN5534DSCN4657

Richard Hutto and Garry Hatzell