Tag Archives: Ozark Plateaus

Statemap 2015-16 Update

 

Hello all!

Well, another year, another map!  The Brownsville quad is now published (see map below), and a link to it will be posted on our website soon.  This year marks the 22nd anniversary of Statemap, aka the National Cooperative Geologic Mapping Program, in Arkansas.  Statemap is partially funded by a USGS grant, and was established to encourage the states to map their surface geology at the 1:24,000 scale.  To date, our mapping teams have completed thirty-three quadrangles in the West Gulf Coastal Plain and, with the recent publication of the Brownsville quad, forty quads in the Ozark Plateaus.

Geologic map Brownsville, AR

The geology of the area around Greers Ferry Lake has never been mapped in great detail until now.  Previous work had been to produce the 1:500,000-scale Geologic Map of Arkansas.  Because we mapped the Brownsville quad at the 1:24,000 scale, we were able to make some observations new to science.  A fault was discovered that had never been mapped previously.  We named it the Shiloh Fault for the old town, now inundated by the lake, that lies along its trace.  Meanders of the Little Red River channel approached this fault but didn’t cross it, probably due to encountering more resistant rock on the north side of the fault.  The Witts Springs Formation had not been mapped south of the Choctaw Creek Fault before, but we were able to draw in its upper contact with the Bloyd Formation along the Devil’s Fork and several other drainages.

Overturned cross beds in massive sandstone of the undifferentiated Bloyd Formation

As on other quads around Greers Ferry Lake, we continued to find terrace deposits left behind as the Little Red River carved the valley down to its present elevation.  Some of these are stranded as much as 260 feet above the current channel bottom (now located on the bottom of the lake).

DSCN0999

For many years now, our mapping program has focused on completing the Mountain View 1:100,000-scale quad.  This area encompasses thirty-two 1:24,000-scale quads and stretches from Richland Creek to Sylamore Creek on the north side and from the Illinois Bayou to Greers Ferry Lake on the south side.  Now that this area is finished, our Statemap Advisory Committee has decided we should jump over to northwest Arkansas to complete work on the Fly Gap Mountain quad, just west of the Mountain View quad (see map below).

STATEMAP index for blog

So for next year, the Statemap team is going to start work on the Durham quad in the northwest corner of the Fly Gap Mountain quad near Fayetteville.  We’ll have to spend a few weeks getting our feet on the ground, so to speak, because we won’t have the benefit of already mapped quads adjacent.  Fortunately, we will be very close to the type-sections for most of the formations we’ll be mapping, so hopefully, we can study the classic outcrops and trace them into our new field area without too much difficulty.

DSCN0704

A type-section is an area, or even just an outcrop, where a particular formation was first described.  They are named after a local geographic feature.  Formations first described in northwest Arkansas include: the Fayetteville Shale, the Pitkin Limestone, and the Hale Formation which has the Cane Hill and Prairie Grove as members.  Members are smaller, discernable units within a formation.  The type-section for the Bloyd Formation, including the Brentwood, Woolsey, Dye, and Kessler Members, and the Trace Creek, which is the basal member of the Atoka Formation (named for its type locality in Oklahoma), is on Bloyd Mountain near West Fork.

I would like to take this opportunity to thank my field partners that accompanied me this past year.

DSCN2086

I started the year with Ty Johnson, who has since moved into a permanent staff position at the Survey, so congratulations to him!  He was with me for just a year, but we covered a lot of ground together.  He’s now mapping the geology of the Lake Ft. Smith area with an emphasis on landslide mitigation.

DSCN2258

The writer and also principle investigator of the Statemap grant, Angela Chandler, went out a few weeks in the late fall before we could fill the vacancy Ty left behind.  No matter how much I learn, she always manages to teach me something new.

DSCN2641

We hired Garry Hatzell, a recent U of A grad, who started fieldwork in January.  He brings an enthusiastic knowledge of paleontology to the mix, and I look forward to his continued insight into the biostratigraphy of our field areas.

Without the help of these fine folks, we couldn’t have gathered the data or produced the map.  Also, I would have been stuck in the office—a torture for the unrepentant field geologist.

Wish us luck on the Durham quad!  And if you’re in northwest Arkansas during the next twelve months and happen to drive by a Jeep Cherokee with the AGS seal on it, be sure to stop and introduce yourself.

 DSCN3153

Until then, I’ll see you on the outcrop!

  DSCN2275       

Richard Hutto

Geo-pic of the week: “Painted rocks”

manganese staining

Pictured above is a bluff of St. Peter Sandstone exhibiting some spectacular black staining.  The bluff is exposed near the confluence of Sylamore Creek and the White River north of Mountain View, Arkansas.  Bluffs with this staining are referred to as “painted” because it looks like paint has been poured over the face of the rock.

The stains, which are manganese oxide, were deposited by groundwater as it seeped from the sandstone.  The St. Peter Sandstone contains a minute amount of manganese that gets picked up by water as it flows through the rock.  When the groundwater flows out of the sandstone, some of it evaporates leaving the manganese behind.  Over time, a coating of manganese builds up on the bluff face.

The St. Peter Sandstone is also found along certain reaches of the Buffalo National River.  The “Painted Bluff” – as it is known locally to river folk – is another great  example of manganese staining.

Geopic of the week: Paleokarst on the Buffalo River

Big Plug Paleosinkhole Gimped 20 Apr 01

This is a picture of a paleokarst feature from the Upper Buffalo River in Newton County, Arkansas.  Paleokarst features, like this one, are ancient caves or sinkholes that have been preserved in the rock record.

In this case, a sinkhole formed when bedrock was exposed above sea level and acidic rainwater dissolved a vertical pit in the bedrock.  When sea level rose and covered the area again, more sediment was washed in and the sinkhole was filled with sand.  Eventually the sand became sandstone and a cast of the sinkhole is preserved today (center of photo).

All of this happened about 450 million years ago.  Paleokarst features are one more clue geologists use to decipher earth’s history.  If you didn’t know better, you might float right by and never give it a second thought.

Geopic of the week: Travertine falls

Travertine Fall over St. Peter ss, Searcy County

Pictured above is a travertine falls.  It looks like a waterfall except that, rather than being water, it’s composed of solid rock.

Travertine is made of calcite which also forms stalactites and stalagmites.  Like those familiar cave features, travertine falls form by precipitation from water; the water is flowing in a creek, over a ledge instead of dripping from a cave ceiling.  As the travertine precipitates in layer upon layer, it begins to take on the appearance of flowing rock.

Dripstone features like these only form in areas where the groundwater carries a high load of dissolved carbonate minerals.  This one was photographed in Searcy County, Arkansas, not far from the Buffalo National River, near the contact between the St. Peter and Plattin Formations.

For another view of this travertine falls click here

Statemap 2014-15 Update

2014-08-04 006

Hello all,

Just wanted to let you know that the Statemap 2014-15 field mapping project has resulted in the publication of three new geologic maps.  These are the Parma, Prim, and Greers Ferry quadrangles.  Reduced images are posted below.  These should be available as .pdfs on our website in the near future.  I’ll keep you posted!Parma

Parma Quadrangle

2014-09-15 013Prim

Prim Quadrangle

Prim boulder (cannonball concretion) in Sugar Camp Creek

Greers Ferry Layout

Greers Ferry Quadrangle

Old Terrace deposit underlying Greers Ferry, AR

Also, I would like to thank the many people who helped with data collection in the field this year, without whom this project would have been impossible.

2014-07-15 037 (2)2014-07-21 004

Andy Haner                                                        Danny Rains

 

2014-09-03 0052014-09-16 003

Angela Chandler                                                                     Stefanie Domrois

 

2014-10-15 010DSCN9627

Doug Hanson                                  Ty Johnson

Thanks, everyone!

 

Now it’s off to the Brownsville quad for next year!

DSCN0255

Richard Hutto

GeoPic Of The Week: Small Spring In The Ozarks

Small Spring In The Ozarks

Small Spring In The Ozarks

Springs are abundant in the Ozark Plateaus Region in northern Arkansas.  The spring above flows to the surface along a bedding plane between the Plattin Limestone (upper half of picture) and the St. Peter Sandstone (covered in lower half of picture).  It is common to see springs at the base of limestone units.  Limestone is more easily solutioned than sandstone or shale, allowing water to travel downward from the surface by cracks and through openings in the rock.  Once the water reaches the sandstone (as pictured above) and can no longer travel vertically, it will flow laterally along the bedding plane between the limestone and the sandstone until it reaches an outlet such as a spring along a hillside or in a valley.