Tag Archives: Conglomerate

Geo-pic of the week: Basal Conglomerate


Pictured above is a little piece of geologic history known as a basal conglomerate.  that’s a rock formed after a period of erosion that marks the boundary between two geologic time periods: in this case, the Mississippian (359-318 million years ago) and the Pennsylvanian (318-299 million years ago).

318 million years ago sea level subsided, bedrock was exposed, and the Mississippian Period came to an end.  When exposed to erosion at the earth’s surface, pieces break off from bedrock.  Flowing water in rivers, streams and oceans wears the edges of those rock fragments till they’re rounded.  Once ocean level rises and deposition resumes, the rounded gravel gets mixed with newly accumulating sediment and forms a rock which is made partly of fragments of the older bedrock.  Geologists call this type of rock a basal (at the base) conglomerate (containing round gravel) because it is the first bedrock signaling the beginning of a new period of geologic time.

Geo-pic of the week: Pebble Molds

pebbles-great(photo courtesy of Angela Chandler)

The sedimentary rock in the picture above is a sandstone with pebble molds. If the pebbles were present, this rock would be considered a conglomerate. Conglomerates consist of 2 mm or larger rounded fragments of rock, or clasts, surrounded by finer-grained sediment which geologists call “matrix”. The clasts in the rock above were pebble sized, 2-64 mm, and the matrix is sand sized.

Even though many of the clasts have been removed by erosion, we can tell that they were primarily shale pebbles. The sandy matrix was more resistant to erosion than the softer shale pebbles, so we are left with cavities where the pebbles were (pebble molds) on the rock’s surface. This creates an interesting optical illusion. Did you see the cavities as pebbles or as molds when you first looked at the picture?

This type of conglomerate is deposited by energetic and dynamic water, such as is found in rivers and waves. During higher flow periods, only large clasts are deposited. When flow is lower, finer-grained sediment settles in between the larger clasts.